A099036 a(n) = 2^n - Fibonacci(n).
1, 1, 3, 6, 13, 27, 56, 115, 235, 478, 969, 1959, 3952, 7959, 16007, 32158, 64549, 129475, 259560, 520107, 1041811, 2086206, 4176593, 8359951, 16730848, 33479407, 66987471, 134021310, 268117645, 536356683, 1072909784, 2146137379, 4292788987, 8586410014
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- M. Archibald, A. Blecher, and A. Knopfmacher, Fixed Points in Compositions and Words, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).
Crossrefs
Programs
-
Haskell
a099036 n = a099036_list !! n a099036_list = zipWith (-) a000079_list a000045_list -- Reinhard Zumkeller, Aug 15 2013
-
Magma
[2^n-Fibonacci(n): n in [0..35]]; // Vincenzo Librandi, May 03 2011
-
Mathematica
Table[2^n-Fibonacci[n],{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, May 02 2011 *)
-
PARI
a(n)=2^n-fibonacci(n) \\ Charles R Greathouse IV, Sep 24 2015
-
SageMath
def A099036(n): return 2**n -fibonacci(n) # G. C. Greubel, Jun 05 2025
Formula
G.f.: (1 - x)^2/((1 - 2*x)*(1 - x - x^2)).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
a(n) = Sum_{t_1+2*t_2+...+n*t_n = n} multinomial(1+t_1+t_2+...+t_n, 1+t_1, t_2, ..., t_n). - Mircea Merca, Oct 09 2013
E.g.f.: cosh(2*x) + sinh(2*x) - 2*exp(x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Jan 31 2023
Extensions
More terms from Ross La Haye, Aug 05 2005
Comments