cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A099905 a(n) = binomial(2n-1, n-1) mod n.

Original entry on oeis.org

0, 1, 1, 3, 1, 0, 1, 3, 1, 8, 1, 2, 1, 10, 0, 3, 1, 12, 1, 10, 3, 14, 1, 6, 1, 16, 10, 0, 1, 2, 1, 3, 21, 20, 21, 26, 1, 22, 10, 10, 1, 0, 1, 24, 0, 26, 1, 30, 1, 28, 27, 48, 1, 30, 16, 44, 48, 32, 1, 48, 1, 34, 6, 35, 35, 0, 1, 18, 33, 20, 1, 18, 1, 40, 60, 16, 0, 72, 1, 10, 10, 44, 1, 56, 75
Offset: 1

Views

Author

Henry Bottomley, Oct 29 2004

Keywords

Comments

For p prime, a(p)=1. For n in A058008, a(n)=0.
For n the square of a prime p>=3 or the cube of a prime p>=5, a(n)=1. - Franz Vrabec, Mar 26 2008
For n in A228562, a(n)=1. - Felix Fröhlich, Oct 17 2015

Examples

			a(11) = 352716 mod 11 = 1.
		

Crossrefs

Programs

A099908 C(2n-1,n-1) mod n^4.

Original entry on oeis.org

0, 3, 10, 35, 126, 462, 1716, 2339, 4627, 2378, 1332, 4238, 2198, 5148, 1260, 57635, 14740, 85026, 61732, 64410, 100509, 163716, 158172, 171918, 93876, 309780, 148969, 444220, 268280, 370712, 29792, 532771, 652200, 938386, 816466, 907874
Offset: 1

Views

Author

Henry Bottomley, Oct 29 2004

Keywords

Comments

a(16843)=a(2124679)=1 meaning that 16843 and 2124679 are Wolstenholme primes A088164.

Examples

			a(11) =352716 mod 1461 =1332.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Binomial[2n-1,n-1],n^4],{n,40}] (* Harvey P. Dale, Dec 12 2021 *)
  • Python
    from _future_ import division
    A099908_list, b = [], 1
    for n in range(1,10001):
        A099908_list.append(b % n**4)
        b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Jan 26 2016

A099907 a(n) = C(2n-1,n-1) mod n^3.

Original entry on oeis.org

0, 3, 10, 35, 1, 30, 1, 291, 253, 378, 1, 782, 1, 2404, 1260, 291, 1, 3378, 1, 410, 7899, 3996, 1, 6030, 126, 10988, 11188, 5180, 1, 19712, 1, 8483, 5334, 34394, 1841, 21410, 1, 20580, 39556, 38810, 1, 64260, 1, 35972, 66060, 36504, 1, 61326, 1716, 123628
Offset: 1

Views

Author

Henry Bottomley, Oct 29 2004

Keywords

Comments

For p prime > 3, Joseph Wolstenholme showed in 1862 that a(p)=1. - corrected by Jonathan Sondow, Jan 24 2016

Examples

			a(11) = 352716 mod 1331 = 1.
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n-1, n-1) mod n^3: n in [1..50]]; // Vincenzo Librandi, Jan 24 2016
  • Maple
    seq(binomial(2*n-1,n-1) mod n^3, n=1..100); # Robert Israel, Jan 24 2016
  • Mathematica
    Table[Mod[Binomial[2 n - 1, n - 1], n^3], {n, 1, 50}] (* Vincenzo Librandi, Jan 24 2016 *)
  • PARI
    a(n) = binomial(2*n-1, n-1) % n^3; \\ Michel Marcus, Jan 24 2016
    

A267824 Composite numbers n such that binomial(2n-1, n-1) == 1 (mod n^2).

Original entry on oeis.org

283686649, 4514260853041
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2016

Keywords

Comments

Babbage proved the congruence holds if n > 2 is prime.
See A088164 and A263882 for references, links, and additional comments.
Conjecture: n is a term if and only if n = A088164(i)^2 for some i >= 1 (cf. McIntosh, 1995, p. 385). - Felix Fröhlich, Jan 27 2016
The "if" part of the conjecture is true: see the McIntosh reference. - Jonathan Sondow, Jan 28 2016
The above conjecture implies that this sequence and A228562 are disjoint. - Felix Fröhlich, Jan 27 2016
Composites c such that A281302(c) > 1. - Felix Fröhlich, Feb 21 2018

Examples

			a(1) = 16843^2 and a(2) = 2124679^2 are squares of Wolstenholme primes A088164.
		

Crossrefs

A263882 Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n).

Original entry on oeis.org

1, 5, 35, 2915, 30771, 4037381, 48954659, 7782070631, 17875901604959, 242158352370063, 637739431824553035, 126348774791431208099, 1794903484322270273951, 367972191114796344623951, 1116504994413003106003899551, 3498520498083111051973370669639
Offset: 2

Views

Author

Jonathan Sondow, Nov 22 2015

Keywords

Comments

Charles Babbage proved in 1819 that b_p is an integer for prime p > 2. In 1862 Wolstenholme proved that the Wolstenholme quotient W_p = b_p / p is an integer for prime p > 3; see A034602.
The quotient b_n is an integer for composite n in A267824. No composite n is known for which W_n is an integer.

Examples

			a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Programs

  • Magma
    [(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // Vincenzo Librandi, Nov 25 2015
  • Maple
    map(p -> (binomial(2*p-1,p-1)-1)/p^2, select(isprime,[seq(i,i=3..100,2)])); # Robert Israel, Nov 24 2015
  • Mathematica
    Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}]
    Table[(Binomial[2p-1,p-1]-1)/p^2,{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 20 2019 *)

Formula

a(n) = prime(n)*A034602(n) for n > 2.
a(PrimePi(A088164(n))) == 0 mod A088164(n)^2.

A242473 Binomial(2p-1,p-1) modulo p^4, with p=prime(n).

Original entry on oeis.org

3, 10, 126, 1716, 1332, 2198, 14740, 61732, 158172, 268280, 29792, 557184, 2343315, 2623732, 3218514, 5657327, 11911983, 12710937, 7218313, 12526886, 24119055, 18735483, 13151102, 19034164, 87616609, 86545285, 2185455, 80852839, 137273075, 106774379, 20483831, 69690822, 20570825
Offset: 1

Views

Author

Felix Fröhlich, May 26 2014

Keywords

Comments

A value of 1 indicates a Wolstenholme prime.

Crossrefs

Cf. A088164, A099905, A099906, A099907. Subsequence of A099908.

Programs

  • Mathematica
    Table[Mod[Binomial[2p-1,p-1],p^4],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    forprime(n=2, 10^2, m=(binomial(2*n-1, n-1)%n^4); print1(m, ", "));
    
  • Python
    from _future_ import division
    from sympy import isprime
    A242473_list, b = [], 1
    for n in range(1,10**4):
        if isprime(n):
            A242473_list.append(b % n**4)
        b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Jan 26 2016
    
  • Python
    from sympy import Mod, binomial, prime
    def A242473(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**4)) # Chai Wah Wu, Apr 24 2025
Showing 1-6 of 6 results.