cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A101448 Nonnegative numbers k such that 2k + 11 is prime.

Original entry on oeis.org

0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 21, 24, 25, 28, 30, 31, 34, 36, 39, 43, 45, 46, 48, 49, 51, 58, 60, 63, 64, 69, 70, 73, 76, 78, 81, 84, 85, 90, 91, 93, 94, 100, 106, 108, 109, 111, 114, 115, 120, 123, 126, 129, 130, 133, 135, 136, 141, 148, 150, 151, 153, 160, 163
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 24 2005

Keywords

Comments

2 is the smallest single-digit prime and 11 is the smallest two-digit prime.

Examples

			If n=1, then 2*1 + 11 = 13 (prime).
If n=49, then 2*49 + 11 = 109 (prime).
If n=69, then 2*69 + 11 = 149 (prime).
		

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), this seq (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Extensions

More terms from Stefan Steinerberger, Feb 28 2006
Definition clarified by Zak Seidov, Jul 11 2014

A101123 Numbers k for which 7*k + 11 is prime.

Original entry on oeis.org

0, 6, 8, 14, 18, 20, 24, 26, 36, 38, 48, 54, 60, 68, 78, 80, 84, 86, 90, 96, 104, 114, 116, 128, 138, 140, 144, 146, 150, 156, 158, 168, 170, 174, 188, 204, 206, 210, 216, 224, 228, 230, 236, 246, 248, 254, 260, 266, 270, 284, 288, 294, 296, 300, 306, 318, 320
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 21 2005

Keywords

Comments

Note that 7 is the largest single-digit prime and 11 is the smallest two-digit prime.

Examples

			For k=6, 7*6 + 11 = 53 (prime).
For k=8, 7*8 + 11 = 67 (prime).
For k=14, 7*14 + 11 = 109 (prime).
		

Crossrefs

Programs

Extensions

Extended by Ray Chandler, Jan 25 2005

A101084 Numbers k such that 97*k + 101 is a prime.

Original entry on oeis.org

0, 6, 8, 14, 18, 30, 36, 50, 86, 90, 96, 110, 114, 116, 126, 128, 134, 138, 140, 156, 158, 174, 186, 194, 200, 204, 218, 236, 258, 260, 266, 278, 294, 296, 300, 314, 326, 336, 338, 344, 348, 354, 366, 368, 378, 398, 420, 428, 468, 470, 476, 498, 504, 516, 524
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 21 2005

Keywords

Comments

97 is the largest two-digit prime and 101 is the smallest three-digit prime.

Examples

			If k=6, then 97*6 + 101 = 683 (prime).
If k=8, then 97*8 + 101 = 877 (prime).
If k=14, then 97*14 + 101 = 1459 (prime).
		

Crossrefs

Programs

Extensions

Extended by Ray Chandler, Jan 25 2005

A101444 Numbers k such that (9973*k + 10007) is a prime.

Original entry on oeis.org

0, 14, 32, 42, 48, 98, 104, 108, 120, 122, 132, 180, 204, 210, 224, 228, 230, 264, 278, 300, 302, 308, 318, 342, 344, 348, 350, 374, 384, 402, 410, 414, 428, 438, 444, 462, 470, 500, 522, 540, 564, 602, 614, 638, 644, 672, 678, 692, 698, 714, 720, 740, 782
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 18 2005

Keywords

Comments

Note that 9973 is the largest four-digit prime and 10007 is the smallest five-digit prime.

Examples

			If k=14 then 9973*14 + 10007 = 149629 (prime).
If k=32 then 9973*32 + 10007 = 329143 (prime).
If k=42 then 9973*42 + 10007 = 428873 (prime).
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 0, 791], PrimeQ[9973# + 10007]&] (* Robert G. Wilson v, Jan 20 2005 *)

Extensions

Extended by Lior Manor, Ray Chandler and Robert G. Wilson v, Jan 20 2005

A100776 a(n) = 997*n + 1009.

Original entry on oeis.org

1009, 2006, 3003, 4000, 4997, 5994, 6991, 7988, 8985, 9982, 10979, 11976, 12973, 13970, 14967, 15964, 16961, 17958, 18955, 19952, 20949, 21946, 22943, 23940, 24937, 25934, 26931, 27928, 28925, 29922, 30919, 31916, 32913, 33910, 34907, 35904, 36901, 37898, 38895
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 03 2005

Keywords

Comments

Note that 997 is the largest three-digit prime and 1009 is the smallest four-digit prime.

Examples

			If n=1, 997*1 + 1009 = 2006.
If n=2, 997*2 + 1009 = 3003.
		

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Dec 07 2024: (Start)
G.f.: (1009 - 12*x)/(1 - x)^2.
E.g.f.: (1009 + 997*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
Edited by Ray Chandler, Jan 25 2005

A108341 Numbers n such that 997*n - 1009 is prime.

Original entry on oeis.org

6, 8, 18, 30, 36, 38, 44, 66, 78, 90, 98, 104, 116, 134, 140, 144, 156, 164, 168, 170, 200, 228, 230, 246, 248, 260, 276, 296, 318, 344, 354, 374, 378, 380, 386, 408, 420, 426, 450, 464, 468, 480, 500, 510, 546, 576, 578, 584, 606, 608, 618, 620, 630, 654, 678
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 30 2005

Keywords

Comments

997 and 1009 are primes.
All terms are even. - Harvey P. Dale, Mar 09 2019

Examples

			If n=6, then 997*n - 1009 = 4973 (prime).
If n=90, then 997*n - 1009 = 88721 (prime).
		

Crossrefs

Cf. A101086.

Programs

  • Maple
    a:=proc(n) if isprime(997*n-1009)=true then n else fi end: seq(a(n),n=1..750); # Emeric Deutsch, Jul 04 2005
  • Mathematica
    Select[Range[2,700,2],PrimeQ[997#-1009]&] (* Harvey P. Dale, Mar 09 2019 *)
  • PARI
    is(n)=isprime(997*n-1009) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

More terms from Emeric Deutsch, Jul 04 2005

A101503 Numbers k such that 11*k + 101 is prime.

Original entry on oeis.org

0, 6, 10, 12, 16, 28, 30, 40, 42, 46, 52, 58, 60, 66, 76, 88, 90, 100, 102, 108, 118, 126, 130, 132, 136, 138, 142, 160, 168, 172, 180, 192, 208, 210, 216, 220, 222, 228, 238, 240, 250, 256, 258, 268, 276, 280, 282, 292, 306, 310, 312, 322, 328, 336, 342, 346
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 24 2005

Keywords

Comments

11 is the smallest two-digit prime and 101 is the smallest three-digit prime.

Examples

			If k=0, then 11*0 + 101 = 101 (prime).
If k=6, then 11*6 + 101 = 167 (prime).
If k=60, then 11*60 + 101 = 761 (prime).
		

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Feb 28 2006
Showing 1-7 of 7 results.