A089675
Numbers k such that 10^k - 3 is prime.
Original entry on oeis.org
1, 2, 3, 17, 140, 990, 1887, 3530, 5996, 13820, 21873, 26045, 87720, 232599, 480684, 538640
Offset: 1
Michael Gottlieb (mzrg(AT)verizon.net), Jan 05 2004
10^2 - 3 = 97 is a prime number (in fact all terms are the largest less than 10^k).
a(9) and a(10) from Gabriel Cunningham (gcasey(AT)mit.edu), Mar 06 2004
a(11) from Gabriel Cunningham (gcasey(AT)mit.edu), Mar 13 2004
A069215
Numbers n such that phi(n) = reversal(n).
Original entry on oeis.org
1, 21, 63, 270, 291, 2991, 6102, 46676013, 69460293, 2346534651, 6313047393, 23400000651, 80050617822, 234065340651, 234659934651, 2340000000651, 2530227348360, 2934000006591
Offset: 1
phi(291) = 192.
phi(6102) = 2016 = reversal(6102), so 6102 belongs to the sequence.
-
Do[If[EulerPhi[n] == FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 1, 10^5}]
-
for( n=1,1e9, A004086(n)==eulerphi(n) & print1(n","))
A085331
Numbers n such that phi(rev(n))=n.
Original entry on oeis.org
1, 12, 36, 192, 1992, 2016, 31067664, 39206496, 1564356432, 3937403136, 15600000432, 22871605008, 156043560432, 156439956432, 1560000000432, 1956000004392
Offset: 1
phi[{1,21,63,291,2991,6102}] = {1,12,36,192,1992,2016}
-
v = {1}; Do[ If[ n == EulerPhi[ FromDigits[ Reverse[ IntegerDigits [ n ] ] ] ], v = Append[ v, n ]; Print[ v ], If[ Mod[ n, 1000000 ] == 0, Print[ -n ] ] ], {n, 2, 2050000000, 2} ] (Firoozbakht)
A086947
Numbers k such that R(k+9) = 3.
Original entry on oeis.org
21, 291, 2991, 29991, 299991, 2999991, 29999991, 299999991, 2999999991, 29999999991, 299999999991, 2999999999991, 29999999999991, 299999999999991, 2999999999999991, 29999999999999991, 299999999999999991, 2999999999999999991, 29999999999999999991, 299999999999999999991
Offset: 1
-
[3*(10^n-3): n in [1..25] ]; // Vincenzo Librandi, Aug 22 2011
-
Table[3*(10^n-3), {n, 17}]
Table[FromDigits[PadRight[{3},n,0]],{n,2,20}]-9 (* Harvey P. Dale, Nov 27 2012 *)
A101703
Numbers n such that reversal(n) = (2/3)*n - 2.
Original entry on oeis.org
21, 291, 885, 2991, 29991, 234651, 299991, 2340651, 2999991, 8221845, 23400651, 29346591, 29999991, 234000651, 293406591, 299999991, 2340000651, 2346534651, 2934006591, 2993465991, 2999999991, 23400000651, 23465934651, 29340006591, 29934065991, 29999999991, 82277815845, 234000000651
Offset: 1
f(0,1,2,3) = 2934006534006534006591 is in the sequence because reversal(2934006534006534006591) = 1956004356004356004392 = (2/3)*2934006534006534006591-2.
A102278
Numbers k such that 78*10^k + 217 is prime.
Original entry on oeis.org
1, 2, 8, 10, 13, 21, 22, 36, 57, 80, 149, 484, 505, 642, 806, 974, 1674, 34177
Offset: 1
8 is in the sequence because 78.(8-3)(0).217 = 7800000217 is prime.
-
Do[If[PrimeQ[78*10^n + 217], Print[n]], {n, 8280}]
-
is(n)=ispseudoprime(78*10^n+217) \\ Charles R Greathouse IV, May 22 2017
Showing 1-6 of 6 results.
Comments