Original entry on oeis.org
7, 9, 13, 14, 18, 19, 21, 26, 27, 28, 31, 35, 36, 37, 39, 42, 43, 45, 49, 52, 54, 56, 57, 61, 62, 63, 65, 67, 70, 72, 73, 74, 76, 77, 78, 79, 81, 84, 86, 90, 91, 93, 95, 97, 98, 99, 103, 104, 105, 108, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133
Offset: 1
A083500
Smallest k such that n*(n+k) + 1 is a cube.
Original entry on oeis.org
6, 11, 18, 27, 38, 51, 2, 83, 29, 123, 146, 171, 43, 38, 258, 291, 326, 1, 51, 443, 174, 531, 578, 627, 678, 2, 10, 530, 902, 963, 473, 1091, 1158, 1227, 3, 25, 438, 1523, 66, 1683, 1766, 330, 1042, 2027, 46, 2211, 2306, 2403, 70, 2603, 2706, 417, 2918, 73
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003
a(7) = 2 as 7*9 + 1 = 64 = 4^3, though 66 also qualifies but 2<66.
-
Do[k = 0; While[i = n(n + k) + 1; !IntegerQ[i^(1/3)], k++ ]; Print[k], {n, 1, 55}]
A129388
Primes that are equal to the mean of 5 consecutive squares.
Original entry on oeis.org
11, 83, 227, 443, 1091, 1523, 2027, 3251, 6563, 9803, 11027, 12323, 13691, 15131, 21611, 29243, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203, 131771, 136163, 140627, 149771, 173891, 178931
Offset: 1
11 = (1^2 + ... + 5^2)/5;
83 = (7^2 + ... + 11^2)/5;
227 = (13^2 + ... + 17^2)/5.
-
[a: n in [1..600] | IsPrime(a) where a is n^2 + 2*n + 3 ]; // Vincenzo Librandi, Mar 22 2013
-
Select[Table[n^2 + 2 n + 3, {n, 1, 600}], PrimeQ] (* Vincenzo Librandi, Mar 22 2013 *)
-
A102305=[n^2+2*n+3 for n in range(1,1001)]
[n^2+2*n+3 for n in (1..600) if is_prime(A102305[n-1])] # G. C. Greubel, Feb 03 2024
A197985
a(n) = round((n+1/n)^2).
Original entry on oeis.org
4, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027
Offset: 1
-
[Round((n+1/n)^2): n in [1..60]];
-
Table[Floor[(n+1/n)^2+1/2],{n,50}] (* Harvey P. Dale, Aug 12 2012 *)
Join[{4}, 2+Range[2,50]^2] (* G. C. Greubel, Feb 04 2024 *)
-
[4]+[n^2+2 for n in range(2,51)] # G. C. Greubel, Feb 04 2024
A292915
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(2 - exp(x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 11, 26, 75, 1, 5, 18, 51, 150, 541, 1, 6, 27, 94, 299, 1082, 4683, 1, 7, 38, 161, 582, 2163, 9366, 47293, 1, 8, 51, 258, 1083, 4294, 18731, 94586, 545835, 1, 9, 66, 391, 1910, 8345, 37398, 189171, 1091670, 7087261, 1, 10, 83, 566, 3195, 15666, 74067, 378214, 2183339, 14174522, 102247563
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 3)*x^2/2! + (k^3 + 3*k^2 + 9*k + 13)*x^3/3! + (k^4 + 4*k^3 + 18*k^2 + 52*k + 75) x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
3, 6, 11, 18, 27, 38, ...
13, 26, 51, 94, 161, 258, ...
75, 150, 299, 582, 1083, 1910, ...
541, 1082, 2163, 4294, 8345, 15666, ...
-
R:=PowerSeriesRing(Rationals(), 50);
T:= func< n,k | Coefficient(R!(Laplace( Exp(k*x)/(2-Exp(x)) )), n) >;
A292915:= func< n,k | T(k,n-k) >;
[A292915(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
A:= proc(n, k) option remember; k^n +add(
binomial(n, j)*A(j, k), j=0..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 27 2017
-
Table[Function[k, n! SeriesCoefficient[Exp[k x]/(2 - Exp[x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HurwitzLerchPhi[1/2, -n, k]/2][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
-
a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
A(n, k) = 2^k*a000670(n)-sum(j=0, k-1, 2^j*(k-1-j)^n); \\ Seiichi Manyama, Dec 25 2023
-
def T(n,k): return factorial(n)*( exp(k*x)/(2-exp(x)) ).series(x, n+1).list()[n]
def A292915(n,k): return T(k,n-k)
flatten([[A292915(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
A350510
Square array read by descending antidiagonals: A(n,k) is the least number m such that the base-n expansion of m contains the base-n expansions of 1..k as substrings.
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 12, 11, 6, 1, 44, 38, 27, 7, 1, 44, 95, 75, 38, 8, 1, 92, 285, 331, 194, 51, 9, 1, 184, 933, 1115, 694, 310, 66, 10, 1, 1208, 2805, 4455, 3819, 1865, 466, 83, 11, 1, 1256, 7179, 17799, 16444, 8345, 3267, 668, 102, 12, 1
Offset: 2
Square array begins:
n/k|| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
================================================================|
2 || 1 | 2 | 6 | 12 | 44 | 44 | 92 | 184 |
3 || 1 | 5 | 11 | 38 | 95 | 285 | 933 | 2805 |
4 || 1 | 6 | 27 | 75 | 331 | 1115 | 4455 | 17799 |
5 || 1 | 7 | 38 | 194 | 694 | 3819 | 16444 | 82169 |
6 || 1 | 8 | 51 | 310 | 1865 | 8345 | 55001 | 289577 |
7 || 1 | 9 | 66 | 466 | 3267 | 22875 | 123717 | 947260 |
8 || 1 | 10 | 83 | 668 | 5349 | 42798 | 342391 | 2177399 |
9 || 1 | 11 | 102 | 922 | 8303 | 74733 | 672604 | 6053444 |
10 || 1 | 12 | 123 | 1234 | 12345 | 123456 | 1234567 | 12345678 |
11 || 1 | 13 | 146 | 1610 | 17715 | 194871 | 2143588 | 23579476 |
The first n - 1 terms of rows: 2:
A047778, 3:
A048435, 4:
A048436, 5:
A048437, 6:
A048438, 7:
A048439, 8:
A048440, 9:
A048441, 10:
A007908, 11:
A048442, 12:
A048443, 13:
A048444, 14:
A048445, 15:
A048446, 16:
A048447.
-
T[n_,k_]:=(m=0;While[!ContainsAll[Subsequences@IntegerDigits[++m,n],IntegerDigits[Range@k,n]]];m);Flatten@Table[T[1+i,j+1-i],{j,9},{i,j}] (* Giorgos Kalogeropoulos, Jan 09 2022 *)
-
A350510_rows(n,k,N=0)= my(L=List(concat(apply(z->fromdigits([1..z],n),[1..n-1]),if(n>2,fromdigits(concat([1,0],[2..n-1]),n),[]))),T1(x)=digits(x,n),T2(x)=fromdigits(x,n),A(x)=my(S=T1(x));setbinop((y,z)->T2(S[y..z]),[1..#S]),N=if(N,N,L[#L]),A1=A(N));while(#Lsetsearch(A1,z),[1..#L+1])),A1=A(N++));listput(L,N));Vec(L)
A183199
Least integer k such that Floor(k*f(n+1))>k*f(n), where f(n)=(n^2)/(1+n^2).
Original entry on oeis.org
3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502
Offset: 1
Showing 1-7 of 7 results.
Comments