A289147
Number of (n+1) X (n+1) binary matrices M with at most one 1 in each of the first n rows and each of the first n columns and M[n+1,n+1] = 0.
Original entry on oeis.org
1, 5, 34, 286, 2840, 32344, 414160, 5876336, 91356544, 1542401920, 28075364096, 547643910400, 11389266525184, 251428006132736, 5869482147358720, 144413021660821504, 3733822274973040640, 101181690628832198656, 2867011297057247002624, 84764595415605494743040
Offset: 0
a(1) = 5:
[0 0] [1 0] [0 1] [0 0] [0 1]
[0 0] [0 0] [0 0] [1 0] [1 0] .
.
a(2) = 34:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1]
[0 0 0] [0 1 0] [1 0 0] [1 1 0] [0 0 0] [0 1 0] [1 0 0]
.
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0]
[1 1 0] [0 0 0] [1 0 0] [0 0 0] [0 1 0] [0 0 0] [0 1 0]
.
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 0]
[1 0 0] [1 1 0] [0 0 0] [0 1 0] [1 0 0] [1 1 0] [0 0 0]
.
[0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 0]
[0 1 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 0] [0 1 0] [0 0 0] [1 0 0] [0 0 0] [1 0 0]
.
[0 1 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0]
[1 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 0]
[0 0 0] [0 0 0] [0 1 0] [0 0 0] [0 1 0] [0 0 0] .
Cf.:
A000142,
A000165,
A000302,
A002720,
A025167,
A084771,
A087912,
A102773,
A160611,
A160612,
A277382.
-
a:= proc(n) option remember; `if`(n<2, 4*n+1,
(2*n+3)*a(n-1)-(n-1)^2*a(n-2))
end:
seq(a(n), n=0..25);
# second Maple program:
a:= n-> n-> n! * add(binomial(n, i)*4^i/i!, i=0..n):
seq(a(n), n=0..25);
# third Maple program:
a:= n-> n!* simplify(LaguerreL(n, -4), 'LaguerreL'):
seq(a(n), n=0..25);
-
Table[n! LaguerreL[n, -4], {n, 0, 30}] (* Indranil Ghosh, Jul 06 2017 *)
-
from mpmath import *
mp.dps=150
l=chop(taylor(lambda x:exp(4*x/(1-x))/(1-x), 0, 31))
print([int(fac(i)*l[i]) for i in range(len(l))]) # Indranil Ghosh, Jul 06 2017
# or #
from mpmath import *
mp.dps=100
def a(n): return int(fac(n)*laguerre(n, 0, -4))
print([a(n) for n in range(31)]) # Indranil Ghosh, Jul 06 2017
A341014
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * j! * binomial(n,j)^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 17, 34, 1, 1, 5, 31, 139, 209, 1, 1, 6, 49, 352, 1473, 1546, 1, 1, 7, 71, 709, 5233, 19091, 13327, 1, 1, 8, 97, 1246, 13505, 95836, 291793, 130922, 1, 1, 9, 127, 1999, 28881, 318181, 2080999, 5129307, 1441729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 7, 17, 31, 49, 71, ...
1, 34, 139, 352, 709, 1246, ...
1, 209, 1473, 5233, 13505, 28881, ...
1, 1546, 19091, 95836, 318181, 830126, ...
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j]*j!*Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 02 2021 *)
-
{T(n,k) = sum(j=0, n, k^j*j!*binomial(n, j)^2)}
A330260
a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.
Original entry on oeis.org
1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0
-
[Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
-
Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
-
a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
A102757
a(n) = Sum_{i=0..n} C(n,i)^2 * i! * 3^i.
Original entry on oeis.org
1, 4, 31, 352, 5233, 95836, 2080999, 52189096, 1482977857, 47053929268, 1648037039791, 63125834205424, 2624096058047281, 117620219281363852, 5653607876781921463, 290035426344483253816, 15814774125898034896129
Offset: 0
-
seq(sum('binomial(k,i)^2*i!*3^i', 'i'=0..k),k=0..30);
-
f[n_] := Sum[k!*3^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 16}] (* or *)
Range[0, 16]! CoefficientList[ Series[1/(1 - 3x)*Exp[x/(1 - 3x)], {x, 0, 16}], x] (* Robert G. Wilson v, Mar 16 2005 *)
A121079
a(n) = Sum_{i=0..n} C(n,i)^2*i!*4^i + 2^n*n!.
Original entry on oeis.org
2, 7, 57, 757, 13889, 322021, 8962225, 289928549, 10666353409, 439225736005, 19999574572721, 997265831223685, 54028099173536449, 3159178743189436709, 198259676112757095985, 13289233274778582230821, 947420482287986880154625, 71574264415491967142194309
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..363
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- Z. Li, Z. Li and Y. Cao, Enumeration of symplectic and orthogonal injective partial transformations, Discrete Math., 306 (2006), 1781-1787.
-
Array[Sum[Binomial[#, i]^2*i!*4^i, {i, 0, #}] + 2^#*#! &, 18, 0] (* Michael De Vlieger, Nov 28 2018 *)
-
a(n) = 2^n*n! + sum(i=0, n, binomial(n,i)^2*i!*4^i); \\ Michel Marcus, May 31 2018
A121080
a(n) = Sum_{i=0..n} C(n,i)^2*i!*4^i + (1-2^n)*2^(n-1)*n!.
Original entry on oeis.org
1, 4, 37, 541, 10625, 258661, 7464625, 248318309, 9339986689, 391569431365, 18095180332721, 913513359466885, 50008961524486849, 2950209091316054309, 186558089772409191985, 12587159519294553302821, 902488447534988078746625, 68518909362619336345906309
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..363
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- Z. Li, Z. Li and Y. Cao, Enumeration of symplectic and orthogonal injective partial transformations, Discrete Math., 306 (2006), 1781-1787.
-
Array[Sum[Binomial[#, i]^2*i!*4^i, {i, 0, #}] + (1 - 2^#)*2^(# - 1)*#! &, 18, 0] (* Michael De Vlieger, Nov 28 2018 *)
-
a(n) = (1-2^n)*2^(n-1)*n! + sum(i=0, n, binomial(n,i)^2*i!*4^i); \\ Michel Marcus, May 31 2018
Showing 1-6 of 6 results.
Comments