A373445
Triple convolution of the three tribonacci-like sequences A000073(n), A077947(n-2), and A103143(n).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 9, 28, 75, 195, 498, 1229, 2978, 7115, 16756, 39031, 90089, 206228, 468795, 1059197, 2380257, 5323610, 11856514, 26306896, 58172254, 128246136, 281957282, 618367332, 1353112803
Offset: 0
For n=7 the triple convolution of the three sequences b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n) has only three nonzero terms in the sum: b(2)*c(2)*d(3), b(2)*c(3)*d(2), and b(3)*c(2)*c(2). All three terms are 1, so the triple convolution adds up to 3. Hence, a(7) = 3.
-
CoefficientList[Series[x^6/((1-x-x^2-x^3)(1-x-x^2-2x^3)(1-x-x^2-3x^3)), {x, 0, 30}], x]
A081578
Pascal-(1,3,1) array.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 5, 9, 13, 17, ... A016813;
1, 9, 33, 73, 129, ... A081585;
1, 13, 73, 245, 593, ... A081586;
1, 17, 129, 593, 1921, ...
As a triangle this begins:
1;
1, 1;
1, 5, 1;
1, 9, 9, 1;
1, 13, 33, 13, 1;
1, 17, 73, 73, 17, 1;
1, 21, 129, 245, 129, 21, 1;
1, 25, 201, 593, 593, 201, 25, 1;
1, 29, 289, 1181, 1921, 1181, 289, 29, 1;
1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1;
1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
a081578 n k = a081578_tabl !! n !! k
a081578_row n = a081578_tabl !! n
a081578_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A247594
a(n) = a(n-1) + a(n-2) + 3*a(n-3) with a(0) = 1, a(1) = 2, a(2) = 5.
Original entry on oeis.org
1, 2, 5, 10, 21, 46, 97, 206, 441, 938, 1997, 4258, 9069, 19318, 41161, 87686, 186801, 397970, 847829, 1806202, 3847941, 8197630, 17464177, 37205630, 79262697, 168860858, 359740445, 766389394, 1632712413, 3478323142, 7410203737, 15786664118, 33631837281
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 21*x^4 + 46*x^5 + 97*x^6 + 206*x^7 + ...
a(3) = 10 with words [AAA, AAB, ABA, ABC, ACB, BAA, BAB, BCA, CBA, CBC].
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- David Beckwith, Problem 11776, The American Mathematical Monthly, 121 (2014), 455. See solution, 123 (May, 2016), 508-510.
- Roberto Tauraso, Solution of Problem 11776.
- Index entries for linear recurrences with constant coefficients, signature (1,1,3).
-
a247594 n = a247594_list !! n
a247594_list = 1 : 2 : 5 : zipWith (+)
(tail $ zipWith (+) a247594_list $ tail a247594_list)
(map (* 3) a247594_list)
-- Reinhard Zumkeller, Sep 21 2014
-
I:=[1,2,5]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 13 2015
-
LinearRecurrence[{1, 1, 3}, {1, 2, 5}, 40] (* Vincenzo Librandi, Aug 13 2015 *)
-
{a(n) = if( n<0, polcoeff( (2*x + x^2 + x^3) / (3 + x + x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 + x + 2*x^2) / (1 - x - x^2 - 3*x^3) + x * O(x^n), n))};
-
first(m)={my(v=vector(m));v[1]=1;v[2]=2;v[3]=5;for(i=4,m,v[i]=v[i-1]+v[i-2]+3*v[i-3]);v;} /* Anders Hellström, Aug 12 2015 */
A237358
The number of tilings of the 3 X 4 X n room with 1 X 2 X 3 boxes.
Original entry on oeis.org
1, 1, 11, 64, 296, 1716, 9123, 48761, 264457, 1420548, 7652666, 41237256, 222050029, 1196138637, 6442843111, 34702528552, 186921714672, 1006820870616, 5423072856651, 29210535955209, 157337764568209, 847474515870020, 4564784961695166, 24587476389796440
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], eq. (58).
- Index entries for linear recurrences with constant coefficients, signature (2, 14, 42, -42, -237, -504, -103, 487, 1012, 448, -306, -74, -915, 450, -873, -54, 162).
-
A237358 := proc(n)
(1-x)*(1+x)*(1-3*x)*(3*x^2+2*x+1)*(1-x^2-7*x^3+9*x^6)/
(504*x^6 +306*x^11 +1 -1012*x^9 +103*x^7 -2*x +54*x^16 -162*x^17
-450*x^14 +74*x^12 -14*x^2 -487*x^8 -42*x^3 -448*x^10 +915*x^13
+237*x^5 +873*x^15 +42*x^4) ;
coeftayl(%,x=0,n) ;
end proc:
seq(A237358(n),n=0..20) ;
-
CoefficientList[Series[(1 - x) (1 + x) (1 - 3 x) (3 x^2 + 2 x + 1) (1 - x^2 - 7 x^3 + 9 x^6)/(504 x^6 + 306 x^11 + 1 - 1012 x^9 + 103 x^7 - 2 x + 54 x^16 - 162 x^17 - 450 x^14 + 74 x^12 - 14 x^2 - 487 x^8 - 42 x^3 - 448 x^10 + 915 x^13 + 237 x^5 + 873 x^15 + 42 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
A237357
The number of tilings of the 3 X 3 X (2n) room with 1 X 2 X 3 boxes.
Original entry on oeis.org
1, 6, 64, 616, 5936, 57408, 554624, 5359040, 51781696, 500337216, 4834483264, 46712942656, 451361370176, 4361255727168, 42140406169664, 407179478511680, 3934350491492416, 38015456589811776, 367322368167936064, 3549233239845138496, 34294281215843786816
Offset: 0
-
A237357 := proc(n)
(1-x)/ (-22*x^2-7*x-36*x^3+1) ;
coeftayl(%,x=0,n) ;
end proc:
seq(A237357(n),n=0..20) ;
-
CoefficientList[Series[(1 - x)/(-22 x^2 - 7 x - 36 x^3 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
LinearRecurrence[{7,22,36},{1,6,64},30] (* Harvey P. Dale, Mar 20 2024 *)
A356411
Sum of powers of roots of x^3 - x^2 - x - 3.
Original entry on oeis.org
3, 1, 3, 13, 19, 41, 99, 197, 419, 913, 1923, 4093, 8755, 18617, 39651, 84533, 180035, 383521, 817155, 1740781, 3708499, 7900745, 16831587, 35857829, 76391651, 162744241, 346709379, 738628573, 1573570675, 3352327385, 7141783779
Offset: 0
For n=3, a(3) = (2.130395...)^3 + (-0.5651977... - i*1.0434274...)^3 + (-0.5651977... + i*1.0434274...)^3 = 13.
-
LinearRecurrence[{1, 1, 3}, {3, 1, 3}, 40]
-
polsym(x^3 - x^2 - x - 3, 35) \\ Joerg Arndt, Aug 11 2022
Showing 1-6 of 6 results.
Comments