cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A373445 Triple convolution of the three tribonacci-like sequences A000073(n), A077947(n-2), and A103143(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 9, 28, 75, 195, 498, 1229, 2978, 7115, 16756, 39031, 90089, 206228, 468795, 1059197, 2380257, 5323610, 11856514, 26306896, 58172254, 128246136, 281957282, 618367332, 1353112803
Offset: 0

Views

Author

Greg Dresden and Xiaoyuan Wang, Jun 05 2024

Keywords

Comments

If we set b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n), then all three sequences b(n), c(n), and d(n) start with the terms 0,0,1,1,2 and have signatures {1,1,1}, {1,1,2}, and {1,1,3} respectively. The triple convolution is defined as a(n) = Sum_{i+j+k=n} b(i)*c(j)*d(k).

Examples

			For n=7 the triple convolution of the three sequences b(n)=A000073(n), c(n)=A077947(n-2) with c(0)=c(1)=0, and d(n)=A103143(n) has only three nonzero terms in the sum: b(2)*c(2)*d(3), b(2)*c(3)*d(2), and b(3)*c(2)*c(2). All three terms are 1, so the triple convolution adds up to 3. Hence, a(7) = 3.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^6/((1-x-x^2-x^3)(1-x-x^2-2x^3)(1-x-x^2-3x^3)), {x, 0, 30}], x]

Formula

a(n) = (A000073(n+2) + A103143(n+2))/2 - A077947(n).
a(n) = 3*a(n-1) + a(n-3) - 12*a(n-4) - 3*a(n-5) + 2*a(n-6) + 17*a(n-7) + 11*a(n-8) + 6*a(n-9).
G.f.: x^6/((1 - 2*x)*(1 + x + x^2)*(1 - x - x^2 - x^3)*(1 - x - x^2 - 3*x^3)).

A081578 Pascal-(1,3,1) array.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016813, A081585, A081586. Coefficients of the row polynomials in the Newton basis are given by A013611.
As a number triangle, this is the Riordan array (1/(1-x), x*(1+3*x)/(1-x)). It has row sums A015518(n+1) and diagonal sums A103143. - Paul Barry, Jan 24 2005

Examples

			Square array begins as:
  1,  1,   1,   1,    1, ... A000012;
  1,  5,   9,  13,   17, ... A016813;
  1,  9,  33,  73,  129, ... A081585;
  1, 13,  73, 245,  593, ... A081586;
  1, 17, 129, 593, 1921, ...
As a triangle this begins:
  1;
  1,  1;
  1,  5,   1;
  1,  9,   9,    1;
  1, 13,  33,   13,     1;
  1, 17,  73,   73,    17,     1;
  1, 21, 129,  245,   129,    21,     1;
  1, 25, 201,  593,   593,   201,    25,    1;
  1, 29, 289, 1181,  1921,  1181,   289,   29,   1;
  1, 33, 393, 2073,  4881,  4881,  2073,  393,  33,  1;
  1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Haskell
    a081578 n k = a081578_tabl !! n !! k
    a081578_row n = a081578_tabl !! n
    a081578_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 3*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+3*x)^k/(1-x)^(k+1).
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*3^(j-k). - Paul Barry, Oct 23 2006
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(4*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 8*x + 16*x^2/2) = 1 + 9*x + 33*x^2/2! + 73*x^3/3! + 129*x^4/4! + 201*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 3.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 3.
Sum_{k=0..n} T(n, k, 3) = A015518(n+1). (End)

A247594 a(n) = a(n-1) + a(n-2) + 3*a(n-3) with a(0) = 1, a(1) = 2, a(2) = 5.

Original entry on oeis.org

1, 2, 5, 10, 21, 46, 97, 206, 441, 938, 1997, 4258, 9069, 19318, 41161, 87686, 186801, 397970, 847829, 1806202, 3847941, 8197630, 17464177, 37205630, 79262697, 168860858, 359740445, 766389394, 1632712413, 3478323142, 7410203737, 15786664118, 33631837281
Offset: 0

Views

Author

Michael Somos, Sep 20 2014

Keywords

Comments

a(n) is the number of words of length n in {A,B,C} such that no two consecutive letters are B and every letter C is adjacent to exactly one letter B.

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 21*x^4 + 46*x^5 + 97*x^6 + 206*x^7 + ...
a(3) = 10 with words [AAA, AAB, ABA, ABC, ACB, BAA, BAB, BCA, CBA, CBC].
		

Crossrefs

Programs

  • Haskell
    a247594 n = a247594_list !! n
    a247594_list = 1 : 2 : 5 : zipWith (+)
       (tail $ zipWith (+) a247594_list $ tail a247594_list)
       (map (* 3) a247594_list)
    -- Reinhard Zumkeller, Sep 21 2014
    
  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 13 2015
  • Mathematica
    LinearRecurrence[{1, 1, 3}, {1, 2, 5}, 40] (* Vincenzo Librandi, Aug 13 2015 *)
  • PARI
    {a(n) = if( n<0, polcoeff( (2*x + x^2 + x^3) / (3 + x + x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 + x + 2*x^2) / (1 - x - x^2 - 3*x^3) + x * O(x^n), n))};
    
  • PARI
    first(m)={my(v=vector(m));v[1]=1;v[2]=2;v[3]=5;for(i=4,m,v[i]=v[i-1]+v[i-2]+3*v[i-3]);v;} /* Anders Hellström, Aug 12 2015 */
    

Formula

G.f.: (1 + x + 2*x^2) / (1 - x - x^2 - 3*x^3).
0 = a(n) - a(n-1) - a(n-2) - 3*a(n-3) for all n in Z.
From Greg Dresden, Aug 05 2022: (Start)
a(n) = b(n+3) - b(n) for b(n) = A103143(n).
a(n) = c(n+2) - 2*c(n-1) for c(n) = A123102(n). (End)

A237358 The number of tilings of the 3 X 4 X n room with 1 X 2 X 3 boxes.

Original entry on oeis.org

1, 1, 11, 64, 296, 1716, 9123, 48761, 264457, 1420548, 7652666, 41237256, 222050029, 1196138637, 6442843111, 34702528552, 186921714672, 1006820870616, 5423072856651, 29210535955209, 157337764568209, 847474515870020, 4564784961695166, 24587476389796440
Offset: 0

Views

Author

R. J. Mathar, Feb 07 2014

Keywords

Comments

The count compiles all arrangements without respect to symmetry: Stacks that are equivalent after rotations or flips through any of the 3 axes or 3 planes are counted with multiplicity.
The rational generating function is the main body of the Maple program.

Crossrefs

Cf. A000079 (2 X 2 X n rooms), A103143 (2 X 3 X n rooms).

Programs

  • Maple
    A237358 := proc(n)
        (1-x)*(1+x)*(1-3*x)*(3*x^2+2*x+1)*(1-x^2-7*x^3+9*x^6)/
        (504*x^6 +306*x^11 +1 -1012*x^9 +103*x^7 -2*x +54*x^16 -162*x^17
        -450*x^14 +74*x^12 -14*x^2 -487*x^8 -42*x^3 -448*x^10 +915*x^13
        +237*x^5 +873*x^15 +42*x^4) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(A237358(n),n=0..20) ;
  • Mathematica
    CoefficientList[Series[(1 - x) (1 + x) (1 - 3 x) (3 x^2 + 2 x + 1) (1 - x^2 - 7 x^3 + 9 x^6)/(504 x^6 + 306 x^11 + 1 - 1012 x^9 + 103 x^7 - 2 x + 54 x^16 - 162 x^17 - 450 x^14 + 74 x^12 - 14 x^2 - 487 x^8 - 42 x^3 - 448 x^10 + 915 x^13 + 237 x^5 + 873 x^15 + 42 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)

A237357 The number of tilings of the 3 X 3 X (2n) room with 1 X 2 X 3 boxes.

Original entry on oeis.org

1, 6, 64, 616, 5936, 57408, 554624, 5359040, 51781696, 500337216, 4834483264, 46712942656, 451361370176, 4361255727168, 42140406169664, 407179478511680, 3934350491492416, 38015456589811776, 367322368167936064, 3549233239845138496, 34294281215843786816
Offset: 0

Views

Author

R. J. Mathar, Feb 07 2014

Keywords

Comments

The count compiles all arrangements without respect to symmetry: Stacks that are equivalent after rotations or flips through any of the 3 axes or 3 planes are counted with multiplicity.

Crossrefs

Cf. A000079 (2 X 2 X n rooms), A103143 (2 X 3 X n rooms).

Programs

  • Maple
    A237357 := proc(n)
        (1-x)/ (-22*x^2-7*x-36*x^3+1) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(A237357(n),n=0..20) ;
  • Mathematica
    CoefficientList[Series[(1 - x)/(-22 x^2 - 7 x - 36 x^3 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
    LinearRecurrence[{7,22,36},{1,6,64},30] (* Harvey P. Dale, Mar 20 2024 *)

Formula

G.f.: (1-x)/(-22*x^2-7*x-36*x^3+1).

A356411 Sum of powers of roots of x^3 - x^2 - x - 3.

Original entry on oeis.org

3, 1, 3, 13, 19, 41, 99, 197, 419, 913, 1923, 4093, 8755, 18617, 39651, 84533, 180035, 383521, 817155, 1740781, 3708499, 7900745, 16831587, 35857829, 76391651, 162744241, 346709379, 738628573, 1573570675, 3352327385, 7141783779
Offset: 0

Views

Author

Greg Dresden, Aug 05 2022

Keywords

Comments

a(n) is the sum of the n-th powers of the three roots of x^3 - x^2 - x - 3. These roots are c1 = 2.130395..., c2 = -0.5651977... - i*1.0434274..., and c3 = -0.5651977... + i*1.0434274..., and so a(n) = c1^n + c2^n + c3^n. The real parts of c2 and c3 are A273065.
a(n) can also be determined by Vieta's formulas and Newton's identities. For example, a(3) by definition is c1^3 + c2^3 + c3^3, and from Newton's identities this equals e1^3 - 3*e1*e2 + 3*e3 for e1, e2, e3 the elementary symmetric polynomials of x^3 - x^2 - x - 3. From Vieta's formulas we have e1 = 1, e2 = -1, and e3 = 3, giving us e1^3 - 3*e1*e2 + 3*e3 = 1 + 3 + 9 = 13, as expected.

Examples

			For n=3, a(3) = (2.130395...)^3 + (-0.5651977... - i*1.0434274...)^3 + (-0.5651977... + i*1.0434274...)^3 = 13.
		

Crossrefs

Cf. A103143, A123102, A247594, A356463, A273065 (Re c2,c3).

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 3}, {3, 1, 3}, 40]
  • PARI
    polsym(x^3 - x^2 - x - 3, 35) \\ Joerg Arndt, Aug 11 2022

Formula

a(n) = a(n-1) + a(n-2) + 3*a(n-3) with a(0)=3, a(1)=1, a(2) = 3.
G.f.: (3 - 2*x - x^2)/(1 - x - x^2 - 3*x^3).
Showing 1-6 of 6 results.