A103345
Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n).
Original entry on oeis.org
1, 65, 47449, 3037465, 47463376609, 47464376609, 5584183099672241, 357389058474664049, 260537105518334091721, 52107472322919827957, 92311616995117182948130877, 92311647383100199924330877, 445570781131605573859221176881493, 445570839299219762020391212081493
Offset: 1
The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020
A291456
a(n) = (n!)^6 * Sum_{i=1..n} 1/i^6.
Original entry on oeis.org
0, 1, 65, 47449, 194397760, 3037656102976, 141727869124448256, 16674281388691716870144, 4371079210518164503303028736, 2322975003299339366419974718488576, 2322977286679362958150790503464960000000
Offset: 0
-
Table[(n!)^6 * Sum[1/i^6, {i, 1, n}], {n, 0, 15}] (* Vaclav Kotesovec, Aug 27 2017 *)
A103347
Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).
Original entry on oeis.org
1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1
-
f:= n -> numer(Psi(6,n+1)/720 + Zeta(7)):
map(f, [$1..20]); # Robert Israel, Mar 28 2018
-
s=0;lst={};Do[s+=n^1/n^8;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 7] // Numerator, {n, 1, 12}] (* Jean-François Alcover, Dec 04 2013 *)
A103349
Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).
Original entry on oeis.org
1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1
-
s=0;lst={};Do[s+=n^1/n^9;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 8] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
Accumulate[1/Range[10]^8]//Numerator (* Harvey P. Dale, Aug 11 2024 *)
A103351
Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).
Original entry on oeis.org
1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1
A103716
Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).
Original entry on oeis.org
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1
A322266
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{j=1..n} 1/j^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 8, 36, 12, 1, 1, 16, 216, 144, 60, 1, 1, 32, 1296, 1728, 3600, 20, 1, 1, 64, 7776, 20736, 216000, 3600, 140, 1, 1, 128, 46656, 248832, 12960000, 24000, 176400, 280, 1, 1, 256, 279936, 2985984, 777600000, 12960000, 8232000, 705600, 2520, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
2, 3/2, 5/4, 9/8, 17/16, ...
3, 11/6, 49/36, 251/216, 1393/1296, ...
4, 25/12, 205/144, 2035/1728, 22369/20736, ...
5, 137/60, 5269/3600, 256103/216000, 14001361/12960000, ...
Columns k=0..10 give
A000012,
A002805,
A007407,
A007409,
A007480,
A069052,
A103346,
A103348,
A103350,
A103352,
A103717.
-
Table[Function[k, Denominator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Denominator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Denominator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Showing 1-7 of 7 results.
Comments