cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A103583 Same as A103582, but read antidiagonals in upward direction.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2005

Keywords

Comments

Successive digits of A103581.

Crossrefs

Programs

  • Mathematica
    t = Table[ Take[ Flatten[ Table[ Join[ Table[1, {i, n}], Table[0, {i, n}]], {10}]], 15], {n, 15}]; Flatten[ Table[ t[[n - i + 1, i]], {n, 14}, {i, n}]] (* Robert G. Wilson v, Mar 24 2005 *)

Extensions

Rechecked by David Applegate, Apr 19 2005

A103588 1's complement of A103582.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2005

Keywords

Comments

Comment from Jared Benjamin Ricks (jaredricks(AT)yahoo.com), Jan 31 2009: (Start)
This sequence be also be obtained in the following way. Write numbers in binary from left to right and read the resulting array by antidiagonals upwards:
0 : (0, 0, 0, 0, 0, 0, 0, ...)
1 : (1, 0, 0, 0, 0, 0, 0, ...)
2 : (0, 1, 0, 0, 0, 0, 0, ...)
3 : (1, 1, 0, 0, 0, 0, 0, ...)
4 : (0, 0, 1, 0, 0, 0, 0, ...)
5 : (1, 0, 1, 0, 0, 0, 0, ...)
6 : (0, 1, 1, 0, 0, 0, 0, ...)
7 : (1, 1, 1, 0, 0, 0, 0, ...)
... (End)

Examples

			Triangle begins:
0
1 0
0 0 0
1 1 0 0
0 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
		

Crossrefs

Cf. A103582, A103581, A103589. Considered as a triangle, obtained by reversing the rows of the triangle in A103589.

Extensions

More terms from Robert G. Wilson v and Benoit Cloitre, Mar 26 2005
Corrected by N. J. A. Sloane, Apr 19 2005
Rechecked by David Applegate, Apr 19 2005.

A102370 "Sloping binary numbers": write numbers in binary under each other (right-justified), read diagonals in upward direction, convert to decimal.

Original entry on oeis.org

0, 3, 6, 5, 4, 15, 10, 9, 8, 11, 14, 13, 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30, 61, 44, 39, 34, 33, 32, 35, 38, 37, 36, 47, 42, 41, 40, 43, 46, 45, 60, 55, 50, 49, 48, 51, 54, 53, 52, 63, 58, 57, 56, 59, 126, 93, 76, 71, 66, 65, 64, 67, 70, 69
Offset: 0

Views

Author

Philippe Deléham, Feb 13 2005

Keywords

Comments

All terms are distinct, but certain terms (see A102371) are missing. But see A103122.
Trajectory of 1 is 1, 3, 5, 15, 17, 19, 21, 31, 33, ..., see A103192.

Examples

			........0
........1
.......10
.......11
......100
......101
......110
......111
.....1000
.........
The upward-sloping diagonals are:
0
11
110
101
100
1111
1010
.......
giving 0, 3, 6, 5, 4, 15, 10, ...
The sequence has a natural decomposition into blocks (see the paper): 0; 3; 6, 5, 4; 15, 10, 9, 8, 11, 14, 13; 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30; 61, ...
Reading the array of binary numbers along diagonals with slope 1 gives this sequence, slope 2 gives A105085, slope 0 gives A001477 and slope -1 gives A105033.
		

Crossrefs

Related sequences (1): A103542 (binary version), A102371 (complement), A103185, A103528, A103529, A103530, A103318, A034797, A103543, A103581, A103582, A103583.
Related sequences (2): A103584, A103585, A103586, A103587, A103127, A103192 (trajectory of 1), A103122, A103588, A103589, A103202 (sorted), A103205 (base 10 version).
Related sequences (3): A103747 (trajectory of 2), A103621, A103745, A103615, A103842, A103863, A104234, A104235, A103813, A105023, A105024, A105025, A105026, A105027, A105028.
Related sequences (4): A105029, A105030, A105031, A105032, A105033, A105034, A105035, A105108.

Programs

  • Haskell
    a102370 n = a102370_list !! n
    a102370_list = 0 : map (a105027 . toInteger) a062289_list
    -- Reinhard Zumkeller, Jul 21 2012
    
  • Maple
    A102370:=proc(n) local t1,l; t1:=n; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+2^l; fi; od: t1; end;
  • Mathematica
    f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; Table[ f[n] + n, {n, 0, 71}] (* Robert G. Wilson v, Mar 21 2005 *)
  • PARI
    A102370(n)=n-1+sum(k=0,ceil(log(n+1)/log(2)),if((n+k)%2^k,0,2^k)) \\ Benoit Cloitre, Mar 20 2005
    
  • PARI
    {a(n) = if( n<1, 0, sum( k=0, length( binary( n)), bitand( n + k, 2^k)))} /* Michael Somos, Mar 26 2012 */
    
  • Python
    def a(n): return 0 if n<1 else sum([(n + k)&(2**k) for k in range(len(bin(n)[2:]) + 1)]) # Indranil Ghosh, May 03 2017

Formula

a(n) = n + Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k. (Cf. A103185.) In particular, a(n) >= n. - N. J. A. Sloane, Mar 18 2005
a(n) = A105027(A062289(n)) for n > 0. - Reinhard Zumkeller, Jul 21 2012

Extensions

More terms from Benoit Cloitre, Mar 20 2005

A102371 Numbers missing from A102370.

Original entry on oeis.org

1, 2, 7, 12, 29, 62, 123, 248, 505, 1018, 2047, 4084, 8181, 16374, 32755, 65520, 131057, 262130, 524279, 1048572, 2097133, 4194286, 8388587, 16777192, 33554409, 67108842, 134217711, 268435428, 536870885
Offset: 1

Views

Author

Philippe Deléham, Feb 13 2005

Keywords

Comments

Indices of negative numbers in A103122.
Write numbers in binary under each other; start at 2^k, read in upward direction with the first bit omitted and convert to decimal:
. . . . . . . . . . 0
. . . . . . . . . . 1
.. . . . . . . . . 10 < -- Starting here, the upward diagonal (first bit omitted) reads 1 -> 1
.. . . . . . . . . 11
. . . . . . . . . 100 < -- Starting here, the upward diagonal (first bit omitted) reads 10 -> 2
. . . . . . . . . 101
. . . . . . . . . 110
. . . . . . . . . 111
.. . . . . . . . 1000 < -- Starting here, the upward diagonal (first bit omitted) reads 111 -> 7
. . . . . . . . .1001
Thus a(n) = A102370(2^n - n) - 2^n.
Do we have a(n) = 2^n-1-A105033(n-1)? - David A. Corneth, May 07 2020

Crossrefs

Programs

  • Haskell
    a102371 n = a102371_list !! (n-1)
    a102371_list = map (a105027 . toInteger) $ tail a000225_list
    -- Reinhard Zumkeller, Jul 21 2012
  • Maple
    A102371:= proc (n) local t1, l; t1 := -n; for l to n do if `mod`(n-l,2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;
  • Python
    a=1
    for n in range(2,66):
        print(a, end=",")
        a ^= a+n
    # Alex Ratushnyak, Apr 21 2012
    

Formula

a(n) = -n + Sum_{ k >= 1, k == n mod 2^k } 2^k. - N. J. A. Sloane and David Applegate, Mar 22 2005. E.g. a(5) = -5 + 2^1 + 2^5 = 29.
a(2^k + k) -a(k) = 2^(2^k + k) - 2^k, with k>= 1.
a(1)=1, for n>1, a(n) = a(n-1) XOR (a(n-1) + n), where XOR is the bitwise exclusive-or operator. - Alex Ratushnyak, Apr 21 2012
a(n) = A105027(A000225(n)). - Reinhard Zumkeller, Jul 21 2012

Extensions

More terms from Benoit Cloitre, Mar 20 2005
a(16)-a(22) from Robert G. Wilson v, Mar 21 2005
a(15)-a(29) from David Applegate, Mar 22 2005

A103581 A102371 written in base 2.

Original entry on oeis.org

1, 10, 111, 1100, 11101, 111110, 1111011, 11111000, 111111001, 1111111010, 11111111111, 111111110100, 1111111110101, 11111111110110, 111111111110011, 1111111111110000, 11111111111110001, 111111111111110010
Offset: 1

Views

Author

Philippe Deléham, Mar 23 2005

Keywords

Comments

The number of zeros in the n-th term appears to match A089398. - Benoit Cloitre, Mar 24 2005

Crossrefs

Formula

a(n) = A007088(A102371(n)). - Michel Marcus, May 08 2020

Extensions

More terms from Benoit Cloitre, Mar 24 2005

A103589 1's complement of A103583.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2005

Keywords

Examples

			Triangle begins:
0
0 1
0 0 0
0 0 1 1
0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1
		

Crossrefs

Cf. A103582, A103581, A103588. Considered as a triangle, obtained by reversing the rows of the triangle in A103588.

Extensions

More (unfortunately incorrect) terms from Robert G. Wilson v, Mar 26 2005
Corrected by N. J. A. Sloane, Apr 19 2005
Rechecked by David Applegate, Apr 19 2005

A089401 a(n) = m - A089398(2^m + n) for m>=n.

Original entry on oeis.org

1, 1, 3, 2, 4, 5, 6, 5, 7, 8, 11, 9, 11, 12, 13, 12, 14, 15, 18, 18, 19, 20, 21, 20, 22, 23, 26, 24, 26, 27, 28, 27, 29, 30, 33, 33, 36, 36, 37, 36, 38, 39, 42, 40, 42, 43, 44, 43, 45, 46, 49, 49, 50, 51, 52, 51, 53, 54, 57, 55, 57, 58, 59, 58, 60, 61, 64, 64, 67, 69, 69, 68, 70
Offset: 1

Views

Author

Paul D. Hanna, Oct 30 2003

Keywords

Comments

A089398(n) = n-th column sum of binary digits of k*2^(k-1), where summation is over all k>=1, without carrying from columns sums that may exceed 2.
Row sums of triangular arrays in A103582 and in A103583. - Philippe Deléham, Apr 04 2005

Examples

			a(6)=5 since 7 - A089398(2^7 + 6) = 7 - 2 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{lg = Floor[Log[2, n]] + 1}, Sum[ Join[ Reverse[ IntegerDigits[n - i + 1, 2]], {0}][[i]], {i, lg}]]; Table[n - f[2^n + n] + 2, {n, 0, 72}] (* Robert G. Wilson v, Mar 29 2005 *)
  • PARI
    a(n)=n/2+1/2*sum(k=1,n,(-1)^floor((n-k)/2^(k-1))) \\ Benoit Cloitre
    
  • PARI
    {a(n)=if(n<=0,0,m=floor(log(n)/log(2)); if(n-2^m<=m,n-m+a(n-2^m),2^m-1+a(n-2^m)))} \\ Paul D. Hanna, Mar 28 2005

Formula

a(n) = n/2+1/2*sum(k=1, n, (-1)^floor((n-k)/2^(k-1))). - Benoit Cloitre, Mar 28 2005
Let a(0)=0; when n - 2^[log_2(n)] <= [log_2(n)] then a(n) = a(n - 2^[log_2(n)]) + n - [log_2(n)], else a(n) = a(n - 2^[log_2(n)]) + 2^[log_2(n)] - 1. Thus a(2^m) = 2^m - m for all m>=0; for 0<=k<=m: a(2^m + k) = a(k) + 2^m + k - m; for mPaul D. Hanna, Mar 28 2005

Extensions

More terms from Benoit Cloitre and Robert G. Wilson v, Mar 28 2005

A103842 Triangle read by rows: row n is binary expansion of 2^n-n, n >= 1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0
Offset: 1

Views

Author

Philippe Deléham, Mar 31 2005

Keywords

Comments

This sequence can also be obtained by reading (from bottom to top, column by column) the array given in A103582 after suppressing the terms below the main diagonal.

Examples

			Table begins:
1
1 0
1 0 1
1 1 0 0
1 1 0 1 1
1 1 1 0 1 0
1 1 1 1 0 0 1
		

Crossrefs

Programs

  • Maple
    p:=proc(n) local A,j,b: A:=convert(2^n-n,base,2): for j from 1 to nops(A) do b:=j->A[nops(A)+1-j] od: seq(b(j),j=1..nops(A)): end: for n from 1 to 15 do p(n) od; # yields sequence in triangular form # Emeric Deutsch, Apr 16 2005
  • Mathematica
    Table[IntegerDigits[2^n-n,2],{n,20}]//Flatten (* Harvey P. Dale, Feb 06 2022 *)
  • PARI
    tabl(nn) = for (n=1, nn, print(binary(2^n-n))); \\ Michel Marcus, Mar 01 2015

Extensions

More terms from Emeric Deutsch, Apr 16 2005
Showing 1-8 of 8 results.