cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A105034 Binary equivalents of A105033.

Original entry on oeis.org

0, 1, 0, 11, 10, 1, 100, 111, 110, 101, 0, 1011, 1010, 1001, 1100, 1111, 1110, 1101, 1000, 11, 10010, 10001, 10100, 10111, 10110, 10101, 10000, 11011, 11010, 11001, 11100, 11111, 11110, 11101, 11000, 10011, 10, 100001, 100100, 100111, 100110
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2005

Keywords

Comments

Number of 1's in a(n) is A089398(n). - Philippe Deléham, Apr 05 2005.
The version 0, 01, 000, 0011, 00010, 000001, ... is obtained by interchanging 0 and 1 in A103581: 1, 10, 111, 1100, 11101, 111110, .... - Philippe Deléham, Apr 07 2005

Crossrefs

Cf. triangular array in A103589.

Extensions

More terms from Benoit Cloitre, Apr 04 2005

A102370 "Sloping binary numbers": write numbers in binary under each other (right-justified), read diagonals in upward direction, convert to decimal.

Original entry on oeis.org

0, 3, 6, 5, 4, 15, 10, 9, 8, 11, 14, 13, 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30, 61, 44, 39, 34, 33, 32, 35, 38, 37, 36, 47, 42, 41, 40, 43, 46, 45, 60, 55, 50, 49, 48, 51, 54, 53, 52, 63, 58, 57, 56, 59, 126, 93, 76, 71, 66, 65, 64, 67, 70, 69
Offset: 0

Views

Author

Philippe Deléham, Feb 13 2005

Keywords

Comments

All terms are distinct, but certain terms (see A102371) are missing. But see A103122.
Trajectory of 1 is 1, 3, 5, 15, 17, 19, 21, 31, 33, ..., see A103192.

Examples

			........0
........1
.......10
.......11
......100
......101
......110
......111
.....1000
.........
The upward-sloping diagonals are:
0
11
110
101
100
1111
1010
.......
giving 0, 3, 6, 5, 4, 15, 10, ...
The sequence has a natural decomposition into blocks (see the paper): 0; 3; 6, 5, 4; 15, 10, 9, 8, 11, 14, 13; 28, 23, 18, 17, 16, 19, 22, 21, 20, 31, 26, 25, 24, 27, 30; 61, ...
Reading the array of binary numbers along diagonals with slope 1 gives this sequence, slope 2 gives A105085, slope 0 gives A001477 and slope -1 gives A105033.
		

Crossrefs

Related sequences (1): A103542 (binary version), A102371 (complement), A103185, A103528, A103529, A103530, A103318, A034797, A103543, A103581, A103582, A103583.
Related sequences (2): A103584, A103585, A103586, A103587, A103127, A103192 (trajectory of 1), A103122, A103588, A103589, A103202 (sorted), A103205 (base 10 version).
Related sequences (3): A103747 (trajectory of 2), A103621, A103745, A103615, A103842, A103863, A104234, A104235, A103813, A105023, A105024, A105025, A105026, A105027, A105028.
Related sequences (4): A105029, A105030, A105031, A105032, A105033, A105034, A105035, A105108.

Programs

  • Haskell
    a102370 n = a102370_list !! n
    a102370_list = 0 : map (a105027 . toInteger) a062289_list
    -- Reinhard Zumkeller, Jul 21 2012
    
  • Maple
    A102370:=proc(n) local t1,l; t1:=n; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+2^l; fi; od: t1; end;
  • Mathematica
    f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; Table[ f[n] + n, {n, 0, 71}] (* Robert G. Wilson v, Mar 21 2005 *)
  • PARI
    A102370(n)=n-1+sum(k=0,ceil(log(n+1)/log(2)),if((n+k)%2^k,0,2^k)) \\ Benoit Cloitre, Mar 20 2005
    
  • PARI
    {a(n) = if( n<1, 0, sum( k=0, length( binary( n)), bitand( n + k, 2^k)))} /* Michael Somos, Mar 26 2012 */
    
  • Python
    def a(n): return 0 if n<1 else sum([(n + k)&(2**k) for k in range(len(bin(n)[2:]) + 1)]) # Indranil Ghosh, May 03 2017

Formula

a(n) = n + Sum_{ k >= 1 such that n + k == 0 mod 2^k } 2^k. (Cf. A103185.) In particular, a(n) >= n. - N. J. A. Sloane, Mar 18 2005
a(n) = A105027(A062289(n)) for n > 0. - Reinhard Zumkeller, Jul 21 2012

Extensions

More terms from Benoit Cloitre, Mar 20 2005

A102371 Numbers missing from A102370.

Original entry on oeis.org

1, 2, 7, 12, 29, 62, 123, 248, 505, 1018, 2047, 4084, 8181, 16374, 32755, 65520, 131057, 262130, 524279, 1048572, 2097133, 4194286, 8388587, 16777192, 33554409, 67108842, 134217711, 268435428, 536870885
Offset: 1

Views

Author

Philippe Deléham, Feb 13 2005

Keywords

Comments

Indices of negative numbers in A103122.
Write numbers in binary under each other; start at 2^k, read in upward direction with the first bit omitted and convert to decimal:
. . . . . . . . . . 0
. . . . . . . . . . 1
.. . . . . . . . . 10 < -- Starting here, the upward diagonal (first bit omitted) reads 1 -> 1
.. . . . . . . . . 11
. . . . . . . . . 100 < -- Starting here, the upward diagonal (first bit omitted) reads 10 -> 2
. . . . . . . . . 101
. . . . . . . . . 110
. . . . . . . . . 111
.. . . . . . . . 1000 < -- Starting here, the upward diagonal (first bit omitted) reads 111 -> 7
. . . . . . . . .1001
Thus a(n) = A102370(2^n - n) - 2^n.
Do we have a(n) = 2^n-1-A105033(n-1)? - David A. Corneth, May 07 2020

Crossrefs

Programs

  • Haskell
    a102371 n = a102371_list !! (n-1)
    a102371_list = map (a105027 . toInteger) $ tail a000225_list
    -- Reinhard Zumkeller, Jul 21 2012
  • Maple
    A102371:= proc (n) local t1, l; t1 := -n; for l to n do if `mod`(n-l,2^l) = 0 then t1 := t1+2^l end if end do; t1 end proc;
  • Python
    a=1
    for n in range(2,66):
        print(a, end=",")
        a ^= a+n
    # Alex Ratushnyak, Apr 21 2012
    

Formula

a(n) = -n + Sum_{ k >= 1, k == n mod 2^k } 2^k. - N. J. A. Sloane and David Applegate, Mar 22 2005. E.g. a(5) = -5 + 2^1 + 2^5 = 29.
a(2^k + k) -a(k) = 2^(2^k + k) - 2^k, with k>= 1.
a(1)=1, for n>1, a(n) = a(n-1) XOR (a(n-1) + n), where XOR is the bitwise exclusive-or operator. - Alex Ratushnyak, Apr 21 2012
a(n) = A105027(A000225(n)). - Reinhard Zumkeller, Jul 21 2012

Extensions

More terms from Benoit Cloitre, Mar 20 2005
a(16)-a(22) from Robert G. Wilson v, Mar 21 2005
a(15)-a(29) from David Applegate, Mar 22 2005

A037095 "Sloping binary representation" of powers of 3 (A000244), slope = -1.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 11, 17, 19, 25, 123, 65, 195, 169, 171, 753, 435, 249, 2267, 4065, 8163, 841, 843, 31313, 29651, 39769, 38331, 30081, 160643, 49769, 53867, 563377, 700659, 1611961, 760731, 1207073, 5668771, 5566345, 11844619, 8699025, 10386067, 55868313
Offset: 0

Views

Author

Antti Karttunen, Jan 28 1999

Keywords

Examples

			When powers of 3 are written in binary (see A004656), under each other as:
  000000000001 (1)
  000000000011 (3)
  000000001001 (9)
  000000011011 (27)
  000001010001 (81)
  000011110011 (243)
  001011011001 (729)
  100010001011 (2187)
and one collects their bits from the column-0 to NW-direction (from the least to the most significant end), one gets 1 (1), 01 (1), 011 (3), 0001 (1), 00011 (3), 001001 (9), etc. (See A105033 for similar transformation done on nonnegative integers, A001477).
		

Crossrefs

Programs

  • Maple
    A037095:= n-> add(bit_n(3^(n-i), i)*(2^i), i=0..n):
    bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2):
    seq(A037095(n), n=0..41);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1, (p->
           expand((p-(p mod 2))*x/2)+3^n)(b(n-1)))
        end:
    a:= n-> subs(x=2, b(n) mod 2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Dec 10 2020
  • PARI
    A339601(n) = { my(m=1, s=0); while(n>=m, s += bitand(m,n); m <<= 1; n \= 3); (s); };
    A037095(n) = A339601(3^n); \\ Antti Karttunen, Dec 09 2020
    
  • PARI
    BINSLOPE(f) = n -> sum(i=0,n,bitand(2^(n-i),f(i))); \\ General transformation for these kinds of sequences.
    A037095 = BINSLOPE(n -> 3^n); \\ And its application to A000244. - Antti Karttunen, Dec 09 2020

Formula

a(n) = A339601(A000244(n)). - Antti Karttunen, Dec 09 2020

Extensions

Entry revised Dec 29 2007
More terms from Sean A. Irvine, Dec 08 2020

A105029 Write numbers in binary under each other, left justified, read diagonals in downward direction, convert to decimal.

Original entry on oeis.org

0, 2, 6, 5, 4, 14, 13, 8, 11, 10, 9, 12, 30, 29, 24, 19, 18, 17, 20, 23, 22, 21, 16, 27, 26, 25, 28, 62, 61, 56, 51, 34, 33, 36, 39, 38, 37, 32, 43, 42, 41, 44, 47, 46, 45, 40, 35, 50, 49, 52, 55, 54, 53, 48, 59, 58, 57, 60, 126, 125, 120, 115, 98, 65, 68, 71, 70
Offset: 0

Views

Author

Benoit Cloitre, Apr 03 2005

Keywords

Comments

All terms are distinct, but the numbers 2^m - 1 are missing.
a(n) = Sum_{k>=1} B(n+k-1,k)*2^(A103586(n)-k) where B(n,k) n>=1, k>=1 is the infinite array:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
.......
where n-th row consists of binary expansion of n followed by 0's.
a(n) = A105025(n) iff A070939(n) = A103586(n), cf. A214489. - Reinhard Zumkeller, Jul 21 2012

Examples

			0
1
1 0
1 1
1 0 0
1 0 1
1 1 0
1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
and reading the diagonals downwards we get 0, 10, 110, 101, 100, 1110, 1101, etc.
		

Crossrefs

Programs

  • Haskell
    import Data.Bits ((.|.), (.&.))
    a105029 n = foldl (.|.) 0 $ zipWith (.&.) a000079_list $
       map (\x -> (len + 1 - a070939 x) * x)
           (reverse $ enumFromTo n (n - 1 + len))  where len = a103586 n
    -- Reinhard Zumkeller, Jul 21 2012

A133851 Sloping binary representation of powers of 4 (A000302), slope = -1 .

Original entry on oeis.org

1, 0, 0, 4, 0, 0, 16, 0, 0, 64, 0, 0, 256, 0, 0, 1024, 0, 0, 4096, 0, 0, 16384, 0, 0, 65536, 0, 0, 262144, 0, 0, 1048576, 0, 0, 4194304, 0, 0, 16777216, 0, 0, 67108864, 0, 0, 268435456, 0, 0, 1073741824, 0, 0, 4294967296, 0, 0, 17179869184, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 06 2008

Keywords

Examples

			When powers of 4 are written in binary (see A098608), under each other as:
0000000000001 (1)
0000000000100 (4)
0000000010000 (16)
0000001000000 (64)
0000100000000 (256)
0010000000000 (1024)
1000000000000 (4096)
and one collects their bits from the column=0 to NW-direction (from the least to the most significant end), one gets 1 (1), 00 (0), 000 (0), 0100 (4), 00000 (0), 000000 (0), 0010000 (16), etc. (see 0105033 for similar transformation done on nonnegative integers)
		

Crossrefs

Cf. A037095, A077957, A105033, A000302, A098608, A102370(sloping binary numbers).

Formula

a(3n) = A000302(n), a(3n+1) = a(3n+2) = 0. - Alois P. Heinz, Dec 10 2020
Showing 1-6 of 6 results.