cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A134240 Numbers which occur in A105399 but not in A126990.

Original entry on oeis.org

79, 127, 163, 331, 379, 397, 439, 487, 499, 541, 673, 701, 739, 757, 769, 787, 907, 937, 947, 967, 977, 991, 1009, 1103, 1123, 1163, 1187, 1213, 1249, 1367, 1399, 1523, 1549, 1567, 1579, 1597, 1753, 1801
Offset: 1

Views

Author

Artur Jasinski, Oct 15 2007

Keywords

Crossrefs

A049591 Odd primes p such that p+2 is composite.

Original entry on oeis.org

7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 67, 73, 79, 83, 89, 97, 103, 109, 113, 127, 131, 139, 151, 157, 163, 167, 173, 181, 193, 199, 211, 223, 229, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 313, 317, 331, 337, 349, 353, 359, 367, 373, 379, 383, 389
Offset: 1

Views

Author

Keywords

Comments

Primes p such that nextprime(p)-p >= 4.
Primes p such that p+2 divides (p-1)!.
Odd primes n such that n!*B(n+1) is an integer, where B(k) are the Bernoulli numbers. - Benoit Cloitre, Feb 06 2002
Sequence appears also to give all n > 1 such that there is no prime p satisfying the inequality n < p < n+tau(n)^2 where tau(n)=A000005(n). - Benoit Cloitre, Apr 13 2002
Conjecture: start from any initial value f(1) >= 2 and define f(n) to be the largest prime factor of f(1) +f(2) + ... +f(n-1); then f(n) = n/2 + O(log(n)) and there are infinitely many primes p such that f(2p)=p. Conjecture: current sequence gives primes satisfying f(2p)=p when f(1)=3. - Benoit Cloitre, Jun 04 2003
Numbers k such that 2((k-1)! + 1) + k is divisible by k(k+2). For 7 and 13, the respective quotients are also in the sequence. Are there any other such k? - Ivan N. Ianakiev, Aug 03 2019. The next values of k with respective quotients in this sequence are 103, 1531, 1637. - Amiram Eldar, Jun 08 2020
Numbers k such that 4((k-1)! + 1) == k^2 (mod k(k+2)). - Thomas Ordowski, May 09 2020

Examples

			13 is here because it is prime and 15 is composite. Also 15 divides 12!.
		

Crossrefs

Programs

  • Magma
    [k:k in PrimesInInterval(3,400)| not IsPrime(k+2)]; // Marius A. Burtea, Aug 03 2019
    
  • Maple
    d:=4; M:=1000; t0:=[]; for n from 1 to M do p:=ithprime(n); if nextprime(p) - p >= d then t0:=[op(t0),p]; fi; od: t0;
  • Mathematica
    Select[Prime[Range[100]], NextPrime[#] -#>=4 &] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    isok(p) = isprime(p) && (p % 2) && !isprime(p+2); \\ Michel Marcus, Feb 25 2014
    
  • Sage
    [nth_prime(n) for n in (1..100) if (nth_prime(n+1) - nth_prime(n)) >= 4] # G. C. Greubel, Aug 22 2019

Extensions

More terms from Benoit Cloitre, Jun 04 2003
Edited by Don Reble, Dec 20 2006

A126990 Largest prime preceding geometric mean of prime(n) and prime(n+2).

Original entry on oeis.org

3, 3, 7, 7, 13, 13, 19, 23, 23, 31, 31, 37, 43, 47, 47, 53, 61, 61, 67, 73, 73, 83, 89, 89, 97, 103, 103, 109, 113, 113, 131, 131, 139, 139, 151, 151, 157, 167, 167, 173, 181, 181, 193, 193, 199, 199, 211, 223, 229, 233, 233, 241, 241, 251, 257, 263, 271, 271, 277
Offset: 1

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Comments

With duplicates removed, seems to be a subsequence of A105399 and A105792. - M. F. Hasler, Jun 14 2007

References

  • P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004.

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions` a = {}; Do[AppendTo[a,PreviousPrime[Sqrt[(Prime[x])*(Prime[x + 2])]]], {x, 1, 100}]; a
  • PARI
    A126990(n)={ n=sqrtint(prime(n)*prime(n+2)); if( 0==n%2, n--); while(!isprime(n), n-=2); n } /* then vector(50,n,A126990(n)) displays a list of values, M. F. Hasler, Jun 14 2007 */
    
  • PARI
    a(n)= precprime(sqrtint(prime(n)*prime(n+2))); \\ Michel Marcus, Nov 07 2013

Formula

a(n) = A007917(A073273(n)). - Michel Marcus, Nov 07 2013

Extensions

Edited by M. F. Hasler, Jun 14 2007
Definition changed so that offset is now 1 by Michel Marcus, Nov 07 2013

A105575 Largest primes < numbers of the form 6k (duplicates removed).

Original entry on oeis.org

5, 11, 17, 23, 29, 31, 41, 47, 53, 59, 61, 71, 73, 83, 89, 101, 107, 113, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 197, 199, 211, 227, 233, 239, 241, 251, 257, 263, 269, 271, 281, 283, 293, 311, 317, 331, 337, 347, 353, 359, 367, 373, 383, 389
Offset: 1

Views

Author

Giovanni Teofilatto, May 03 2005

Keywords

Examples

			11 is in the sequence because 11 is the largest prime < 12 = 6*2.
		

Crossrefs

Cf. A105399.

Programs

  • Mathematica
    PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; Union[ Table[ PrevPrim[6n], {n, 65}]] (* Robert G. Wilson v, May 21 2005 *)
    NextPrime[#,-1]&/@(6*Range[100])//Union (* Harvey P. Dale, Sep 23 2017 *)

Extensions

Corrected and extended by Robert G. Wilson v, May 21 2005
Edited, corrected and extended by Ray Chandler, Oct 17 2006

A105792 Largest prime <= numbers congruent (2,4) mod 6 (duplicates removed).

Original entry on oeis.org

2, 3, 7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 67, 73, 79, 83, 89, 97, 103, 109, 113, 127, 131, 139, 151, 157, 163, 167, 173, 181, 193, 199, 211, 223, 229, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 313, 317, 331, 337, 349, 353, 359, 367, 373, 379, 383, 389
Offset: 1

Views

Author

Giovanni Teofilatto, May 05 2005

Keywords

Comments

Except for the first terms, largest prime p is at least < two numbers congruent (2,4) mod 6.

Examples

			7 is in the sequence because 7 is the largest prime < 8 which is a number congruent (2,4) mod 6.
		

Crossrefs

Programs

  • Mathematica
    pp[n_] := Block[{k = n},While[ ! PrimeQ[k], k-- ];k];Union[pp /@ Select[Range[400], MemberQ[{2, 4}, Mod[ #, 6]] &]] (* Ray Chandler, Oct 17 2006 *)
    Union[Abs[NextPrime[#,-1]&/@Select[Range[400],MemberQ[{2,4}, Mod[ #,6]]&]]] (* Harvey P. Dale, May 17 2012 *)

Extensions

Extended by Ray Chandler, Oct 17 2006
Showing 1-5 of 5 results.