A106729 Sum of two consecutive squares of Lucas numbers (A001254).
5, 10, 25, 65, 170, 445, 1165, 3050, 7985, 20905, 54730, 143285, 375125, 982090, 2571145, 6731345, 17622890, 46137325, 120789085, 316229930, 827900705, 2167472185, 5674515850, 14856075365, 38893710245, 101825055370, 266581455865
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..300
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
Programs
-
Magma
[Fibonacci(n-2)^2+Fibonacci(n+3)^2: n in [0..30]]; // Vincenzo Librandi, Jul 09 2011
-
Maple
seq(combinat:-fibonacci(n-2)^2 + combinat:-fibonacci(n+3)^2, n=0..100); # Robert Israel, Nov 23 2014
-
Mathematica
Table[LucasL[n]^2 + LucasL[n+1]^2, {n, 0, 30}] (* Wesley Ivan Hurt, Nov 23 2014 *) Total/@Partition[LucasL[Range[0,30]]^2,2,1] (* Harvey P. Dale, Jun 26 2022 *)
-
PARI
a(n) = fibonacci(n-2)^2 + fibonacci(n+3)^2; vector(30, n, a(n-1)) \\ G. C. Greubel, Dec 17 2017
-
Sage
[fibonacci(n-2)^2 + fibonacci(n+3)^2 for n in (0..30)] # G. C. Greubel, Sep 10 2021
Formula
a(n) = Lucas(n)^2 + Lucas(n+1)^2 = 5*(Fibonacci(n)^2 + Fibonacci(n+1)^2) = 5*A001519(n+1).
a(n) = 3*a(n-1) - a(n-2). - T. D. Noe, Dec 11 2006
G.f.: 5*(1-x)/(1-3*x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = Fibonacci(n-2)^2 + Fibonacci(n+3)^2. - Gary Detlefs, Dec 28 2010
a(n) = [1,1; 1,2]^(n-2).{3,4}.{3,4}, for n>=3. - John M. Campbell, Jul 09 2011
a(n) = Lucas(2n) + Lucas(2n+2). - Richard R. Forberg, Nov 23 2014
From Robert Israel, Nov 23 2014: (Start)
a(n) = 5*A000045(2*n+1).
E.g.f.: (5+sqrt(5))/2 * exp((3+sqrt(5))*x/2) + (5-sqrt(5))/2 * exp((3-sqrt(5))*x/2). (End)
From Enrique Navarrete, Mar 24 2025: (Start)
a(n)^2 = 20 + 5*A081071(n).
Limit_{n->oo} a(n+1)/a(n) = (3 + sqrt(5))/2 (see A104457). (End)
Extensions
Corrected by T. D. Noe, Dec 11 2006
More terms from Bruno Berselli, Jul 17 2011
Comments