cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106729 Sum of two consecutive squares of Lucas numbers (A001254).

Original entry on oeis.org

5, 10, 25, 65, 170, 445, 1165, 3050, 7985, 20905, 54730, 143285, 375125, 982090, 2571145, 6731345, 17622890, 46137325, 120789085, 316229930, 827900705, 2167472185, 5674515850, 14856075365, 38893710245, 101825055370, 266581455865
Offset: 0

Views

Author

Lekraj Beedassy, May 14 2005

Keywords

Comments

Positive values of x (or y) satisfying x^2 - 3xy + y^2 + 25 = 0. - Colin Barker, Feb 08 2014
Positive values of x (or y) satisfying x^2 - 7xy + y^2 + 225 = 0. - Colin Barker, Feb 09 2014
Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 1600 = 0. - Colin Barker, Feb 26 2014

Crossrefs

Programs

  • Magma
    [Fibonacci(n-2)^2+Fibonacci(n+3)^2: n in [0..30]]; // Vincenzo Librandi, Jul 09 2011
    
  • Maple
    seq(combinat:-fibonacci(n-2)^2 + combinat:-fibonacci(n+3)^2, n=0..100); # Robert Israel, Nov 23 2014
  • Mathematica
    Table[LucasL[n]^2 + LucasL[n+1]^2, {n, 0, 30}] (* Wesley Ivan Hurt, Nov 23 2014 *)
    Total/@Partition[LucasL[Range[0,30]]^2,2,1] (* Harvey P. Dale, Jun 26 2022 *)
  • PARI
    a(n) = fibonacci(n-2)^2 + fibonacci(n+3)^2;
    vector(30, n, a(n-1)) \\ G. C. Greubel, Dec 17 2017
    
  • Sage
    [fibonacci(n-2)^2 + fibonacci(n+3)^2 for n in (0..30)] # G. C. Greubel, Sep 10 2021

Formula

a(n) = Lucas(n)^2 + Lucas(n+1)^2 = 5*(Fibonacci(n)^2 + Fibonacci(n+1)^2) = 5*A001519(n+1).
a(n) = 3*a(n-1) - a(n-2). - T. D. Noe, Dec 11 2006
G.f.: 5*(1-x)/(1-3*x+x^2). - Philippe Deléham, Nov 16 2008
a(n) = Fibonacci(n-2)^2 + Fibonacci(n+3)^2. - Gary Detlefs, Dec 28 2010
a(n) = [1,1; 1,2]^(n-2).{3,4}.{3,4}, for n>=3. - John M. Campbell, Jul 09 2011
a(n) = Lucas(2n) + Lucas(2n+2). - Richard R. Forberg, Nov 23 2014
From Robert Israel, Nov 23 2014: (Start)
a(n) = 5*A000045(2*n+1).
E.g.f.: (5+sqrt(5))/2 * exp((3+sqrt(5))*x/2) + (5-sqrt(5))/2 * exp((3-sqrt(5))*x/2). (End)
From Enrique Navarrete, Mar 24 2025: (Start)
a(n)^2 = 20 + 5*A081071(n).
Limit_{n->oo} a(n+1)/a(n) = (3 + sqrt(5))/2 (see A104457). (End)

Extensions

Corrected by T. D. Noe, Dec 11 2006
More terms from Bruno Berselli, Jul 17 2011