cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A107342 Semiprimes with semiprime digits (digits 4, 6, 9 only).

Original entry on oeis.org

4, 6, 9, 46, 49, 69, 94, 446, 466, 469, 649, 669, 694, 699, 949, 4449, 4469, 4499, 4666, 4694, 4699, 4946, 6499, 6646, 6649, 6694, 6999, 9446, 9449, 9466, 9469, 9946, 9969, 44494, 44669, 44949, 44966, 44969, 44999, 46469, 46666, 46946, 46969, 46994
Offset: 1

Views

Author

Jonathan Vos Post, May 22 2005

Keywords

Comments

Numbers n such that all digits of n are elements of A001358 and n is an element of A001358.
Numbers n such that n is an element of A107665 and n is an element of A001358.
Conjecture: almost all terms (asymptotic density 1) end with 9 and have either 3k+1 or 3k+2 occurrences of the digit 4 for some nonnegative k. (Otherwise they'd be divisible by 2 or 3 and these semiprimes would be expected to be rare; the sequence is too thin to prove this directly.) - Charles R Greathouse IV, Nov 12 2021

Examples

			4 = 2^2
6 = 2 * 3
9 = 3^2
46 = 2 * 23
49 = 7^2
69 = 3 * 23
94 = 2 * 47
		

Crossrefs

Intersection of A001358 and A107665.

Programs

  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2 && Union[ Join[{4, 6, 9}, IntegerDigits[n]]] == {4, 6, 9}; Select[ Range[ 47000], fQ[ # ] &] (* Robert G. Wilson v, May 27 2005 *)
    Flatten[Table[Select[FromDigits/@Tuples[{4,6,9},n],PrimeOmega[#]==2&],{n,5}]] (* Harvey P. Dale, Jun 14 2015 *)
  • PARI
    is(n)=bigomega(n)==2 && #setminus(Set(digits(n)),[4,6,9])==0 \\ Charles R Greathouse IV, Nov 12 2021

Extensions

More terms from Robert G. Wilson v, May 27 2005

A107666 Primes having only {4, 6, 9} as digits.

Original entry on oeis.org

449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
Offset: 1

Views

Author

Rick L. Shepherd, May 19 2005

Keywords

Comments

Intersection of A000040 and A107665. - K. D. Bajpai, Sep 08 2014

Examples

			From _K. D. Bajpai_, Sep 08 2014: (Start)
4649 is a term because it is a prime having only semiprime digits 4, 6 and 9.
6469 is a term because it is a prime having only semiprime digits 4, 6 and 9.
449 is the smallest prime comprising only semiprime digits 4, 6 or 9.
(End)
		

Crossrefs

Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...).

Programs

  • Maple
    N:= 4:  Dgts:= {4, 6, 9}:  A:= NULL:
    for d from 1 to N do
    K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]);
    while not K[finished] do L:= K[nextvalue]();  x:= add(L[i]*10^(d-i), i=1..d);
    if isprime(x) then A:= A, x fi od od: A;  # K. D. Bajpai, Sep 08 2014
  • Mathematica
    Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)

Extensions

a(35)-a(38) from K. D. Bajpai, Sep 08 2014

A111494 3-almost primes with semiprime digits (digits 4, 6, 9 only).

Original entry on oeis.org

44, 66, 99, 494, 646, 946, 964, 969, 994, 4646, 4669, 4949, 4966, 4994, 4996, 6446, 6466, 6494, 6946, 6964, 6969, 6994, 9494, 9499, 9644, 9669, 9694, 9699, 9994, 44446, 44466, 44644, 44666, 44994, 46446, 46466, 46646, 46669, 46694, 46699, 46949
Offset: 1

Views

Author

Jonathan Vos Post, Nov 15 2005

Keywords

Examples

			a(1) = 44 = 2^2 * 11, a(2) = 66 = 2 * 3 * 11, a(3) = 99 = 3^2 * 11, a(4) = 494 = 2 * 13 * 19, a(5) = 646 = 2 * 17 * 19, a(6) = 946 = 2 * 11 * 43, a(7) = 964 = 2^2 * 241, a(8) = 969 = 3 * 17 * 19, a(9) = 994 = 2 * 7 * 71, a(10) = 4646 = 2 * 23 * 101, a(11) = 4669 = 7 * 23 * 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{4,6,9},n],PrimeOmega[#]==3&],{n,5}]// Flatten (* Harvey P. Dale, Jan 08 2019 *)
  • PARI
    do(N)=my(v=List(),a=[4,6,9]); for(d=1,N, forvec(u=vector(d,i,[1,3]), t=fromdigits(apply(n->a[n],u)); if(bigomega(t)==3, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Corrected by Ray Chandler, Nov 19 2005

A111496 4-almost primes with semiprime digits (digits 4, 6, 9 only).

Original entry on oeis.org

444, 644, 664, 666, 966, 996, 999, 4444, 4466, 4494, 4696, 4964, 6644, 6666, 6699, 9444, 9496, 9646, 9964, 9966, 9999, 44444, 44499, 44646, 44996, 46444, 46449, 46964, 46996, 49444, 49494, 49946, 49966, 49996, 64446, 64494, 64644, 64666
Offset: 1

Views

Author

Jonathan Vos Post, Nov 16 2005

Keywords

Examples

			a(1) = 444 = 2^2 * 3 * 37, a(2) = 644 = 2^2 * 7 * 23, a(3) = 664 = 2^3 * 83, a(4) = 666 = 2 * 3^2 * 37, a(5) = 966 = 2 * 3 * 7 * 23, a(6) = 996 = 2^2 * 3 * 83, a(7) = 999 = 3^3 * 37, a(8) = 4466 = 2 * 7 * 11 * 29, a(9) = 4494 = 2 * 3 * 7 * 107, a(10) = 4696 = 2^3 * 587.
		

Crossrefs

Programs

  • PARI
    do(N)=my(v=List(), a=[4, 6, 9]); for(d=1, N, forvec(u=vector(d, i, [1, 3]), t=fromdigits(apply(n->a[n], u)); if(bigomega(t)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

A111697 5-almost primes with semiprime digits (digits 4, 6, 9 only).

Original entry on oeis.org

464, 496, 696, 944, 4446, 4496, 4664, 6444, 6669, 6996, 9666, 9944, 44649, 44664, 44694, 44696, 44946, 44964, 46664, 46696, 49446, 49496, 49944, 64664, 66664, 66996, 69464, 69944, 69996, 94996, 96464, 96664, 96996, 99664, 99946, 99996
Offset: 1

Views

Author

Jonathan Vos Post, Nov 17 2005

Keywords

Examples

			a(1) = 464 = 2^4 x 29, a(2) = 496 = 2^4 * 31, a(3) = 696 = 2^3 * 3 * 29, a(4) = 944 = 2^4 * 59, a(5) = 4446 = 2 * 3^2 * 13 * 19, a(6) = 4496 = 2^4 * 281, a(7) = 4664 = 2^3 * 11 * 53, a(8) = 6444 = 2^2 * 3^2 * 179, a(9) = 6669 = 3^3 * 13 * 19, a(10) = 6996 = 2^2 * 3 * 11 * 53.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{4,6,9},n],PrimeOmega[#]==5&],{n,3,5}]//Flatten (* Harvey P. Dale, Dec 16 2024 *)
  • PARI
    do(N)=my(v=List(), a=[4, 6, 9]); for(d=1, N, forvec(u=vector(d, i, [1, 3]), t=fromdigits(apply(n->a[n], u)); if(bigomega(t)==5, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Corrected by Ray Chandler, Nov 19 2005

A053961 Squares composed of digits {4,6,9}.

Original entry on oeis.org

4, 9, 49, 64, 44944, 69696, 4999696, 9696996, 9966649, 999444996, 4649466969, 64944444964, 6469646694964996, 69446644696999969, 9446966946446994496, 44499464666496696649, 446646664496496964644, 466994666666446696996, 9469699669494449499664, 494494499966694999949669969
Offset: 1

Views

Author

Patrick De Geest, Mar 15 2000

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Union[ Join[{4, 6, 9}, IntegerDigits[n]]] == {4, 6, 9}; lst = {}; Do[ If[ fQ[n^2], AppendTo[lst, n^2]], {n, 2*10^9}]; lst (* Robert G. Wilson v, Jun 01 2005 *)

Formula

a(n) = A053960(n)^2.

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005
Missing term inserted by Sean A. Irvine, Apr 28 2022

A108614 Semiprimes with non-semiprimes digits (no digits 4,6,9 in semiprimes).

Original entry on oeis.org

10, 15, 21, 22, 25, 33, 35, 38, 51, 55, 57, 58, 77, 82, 85, 87, 111, 115, 118, 121, 122, 123, 133, 155, 158, 177, 178, 183, 185, 187, 201, 202, 203, 205, 213, 215, 217, 218, 221, 235, 237, 253, 278, 287, 301, 302, 303, 305, 321, 323, 327, 335, 355, 358, 371
Offset: 1

Views

Author

Zak Seidov, Jun 13 2005

Keywords

Comments

Complement of A107342 in the class of semiprimes.
This is to semiprimes A001358 as A034844 (Primes with nonprime digits) is to primes A000040. [Jonathan Vos Post, Jul 15 2010]

Crossrefs

Programs

  • Mathematica
    cnd[n_]:=Plus@@Last/@FactorInteger[n]==2&&Union[FreeQ[IntegerDigits[n], # ]&/@{4, 6, 9}]=={True};Select[Range[600], cnd[ # ]&]

Formula

{j in A001358 and j not in A179463}. [Jonathan Vos Post, Jul 15 2010]

A179463 Semiprimes A001358 containing at least one semiprime digit in base 10.

Original entry on oeis.org

4, 6, 9, 14, 26, 34, 39, 46, 49, 62, 65, 69, 74, 86, 91, 93, 94, 95, 106, 119, 129, 134, 141, 142, 143, 145, 146, 159, 161, 166, 169, 194, 206, 209, 214, 219, 226, 247, 249, 254, 259, 262, 265, 267, 274, 289, 291, 295, 298, 299, 309, 314, 319, 326, 329, 334, 339, 341
Offset: 1

Views

Author

Jonathan Vos Post, Jul 15 2010

Keywords

Comments

Semiprimes containing at least one 4, 6, or 9 digit base 10.
This is to semiprimes A001358 as A179336 is to primes A000040.
This properly includes the subset A107342 Semiprimes with semiprime digits.

Crossrefs

Cf. A107342 Semiprimes with semiprime digits (digits 4, 6, 9 only), A107665 Numbers with semiprime digits (digits 4, 6, 9 only), A107666 Primes with semiprime digits (digits 4, 6, 9 only), A111494, A111496, A111697, A108614 Semiprimes with non-semiprimes digits (no digits 4, 6, 9 in semiprimes), A179336.

Programs

  • Mathematica
    spdQ[n_]:=Module[{idn=IntegerDigits[n]},MemberQ[idn,4] || MemberQ[ idn,6] || MemberQ[ idn,9]]; Select[Select[Range[350],PrimeOmega[#]==2&],spdQ] (* Harvey P. Dale, Jun 24 2013 *)

Extensions

Corrected (a(37) added) by Harvey P. Dale, Jun 24 2013

A111730 6-almost primes with semiprime digits (digits 4, 6, 9 only).

Original entry on oeis.org

64, 96, 4644, 4944, 6664, 6966, 9464, 9996, 44464, 44944, 46496, 46644, 49644, 49696, 64449, 64496, 66444, 66696, 69444, 69496, 69966, 94496, 94644, 94696, 96496, 96944, 99666, 99944, 444496, 444664, 444696, 444996, 446664, 446944, 446964, 449469, 449694, 449964, 464496, 464646, 464664, 464994, 469464, 494494, 494944, 494949, 494964, 496464, 499446, 499944, 644464, 644944
Offset: 1

Views

Author

Jonathan Vos Post, Nov 18 2005

Keywords

Examples

			64 = 2^6
96 = 2^5 * 3
4644 = 2^2 * 3^3 * 43
4944 = 2^4 * 3 * 103
6664 = 2^3 * 7^2 * 17
6966 = 2 * 3^4 * 43
9464 = 2^3 * 7 * 13^2
9996 = 2^2 * 3 * 7^2 * 17
44464 = 2^4 * 7 * 397
44944 = 2^4 * 53^2 = 212^2
46496 = 2^5 * 1453
		

Crossrefs

Intersection of A046306 and A107665.

Programs

  • Mathematica
    Select[Range[645000],ContainsOnly[IntegerDigits[#],{4,6,9}]&&PrimeOmega[#]==6&] (* James C. McMahon, Jun 05 2024 *)
  • PARI
    isok(k) = (bigomega(k) == 6) && (#setminus(Set(digits(k)), Set([4,6,9])) == 0); \\ Michel Marcus, Apr 13 2022

Extensions

Missing a(1)=64 prepended and several terms corrected by Georg Fischer and Michel Marcus, Apr 13 2022
Showing 1-9 of 9 results.