cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.

Original entry on oeis.org

1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2012

Keywords

Comments

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790

Examples

			a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
		

Crossrefs

Cf. A120486.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}] (* A211422 *)
    (t - 1)/8                   (* A120486 *)

A108576 Number of 3 X 3 magic squares (with distinct positive entries) having all entries < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 40, 64, 96, 128, 184, 240, 320, 400, 504, 608, 744, 880, 1056, 1232, 1440, 1648, 1904, 2160, 2464, 2768, 3120, 3472, 3880, 4288, 4760, 5232, 5760, 6288, 6888, 7488, 8160, 8832, 9576, 10320, 11144, 11968, 12880, 13792, 14784, 15776
Offset: 1

Author

Thomas Zaslavsky and Ralf Stephan, Jun 11 2005

Keywords

Comments

From Thomas Zaslavsky, Mar 12 2010: (Start)
A magic square has distinct positive integers in its cells, whose sum is the same (the "magic sum") along any row, column, or main diagonal.
a(n) is given by a quasipolynomial of period 12. (End)

Examples

			a(10) = 8 because there are 8 3 X 3 magic squares with distinct entries < 10 (they are the standard magic squares).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -2, 2, -2, 1, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 40}, 60] (* Jean-François Alcover, Nov 12 2018 *)
    CoefficientList[Series[(8 x^10 (2 x^2 + 1)) / ((1 - x^6) (1 - x^4) (1 - x)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Nov 12 2018 *)
  • PARI
    a(n)=1/6*(n^3-16*n^2+(76-3*(n%2))*n -[96,58,96,102,112,90,96,70,96,90,112,102][(n%12)+1])

Formula

G.f.: (8*x^10*(2*x^2+1)) / ((1-x^6)*(1-x^4)*(1-x)^2).
a(n) is given by a quasipolynomial of period 12.

Extensions

Edited by N. J. A. Sloane, Feb 05 2010

A108577 Number of symmetry classes of 3 X 3 magic squares (with distinct positive entries) having all entries < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 8, 12, 16, 23, 30, 40, 50, 63, 76, 93, 110, 132, 154, 180, 206, 238, 270, 308, 346, 390, 434, 485, 536, 595, 654, 720, 786, 861, 936, 1020, 1104, 1197, 1290, 1393, 1496, 1610, 1724, 1848, 1972, 2108, 2244, 2392, 2540, 2700, 2860
Offset: 1

Author

Thomas Zaslavsky, Jun 11 2005

Keywords

Comments

A magic square has distinct positive integers in its cells, whose sum is the same (the "magic sum") along any row, column, or main diagonal. The symmetries are those of the square. - Thomas Zaslavsky, Mar 12 2010

Examples

			a(10) = 1 because there is only one symmetry type of 3 X 3 magic square with entries 1,...,9.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -2, 2, -2, 1, 0, -1, 2, -1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5}, 58] (* Mike Sheppard, Feb 04 2025 *)

Formula

G.f.: (x^10*(2*x^2+1)) / ((1-x^6)*(1-x^4)*(1-x)^2).
a(n) is given by a quasipolynomial of period 12.

A108578 Number of 3 X 3 magic squares with magic sum 3n.

Original entry on oeis.org

0, 0, 0, 0, 8, 24, 32, 56, 80, 104, 136, 176, 208, 256, 304, 352, 408, 472, 528, 600, 672, 744, 824, 912, 992, 1088, 1184, 1280, 1384, 1496, 1600, 1720, 1840, 1960, 2088, 2224, 2352, 2496, 2640, 2784, 2936, 3096, 3248, 3416, 3584, 3752, 3928, 4112, 4288
Offset: 1

Author

Thomas Zaslavsky and Ralf Stephan, Jun 11 2005

Keywords

Comments

Contribution from Thomas Zaslavsky, Mar 12 2010: (Start)
A magic square has distinct positive integers in its cells, whose sum is the same (the "magic sum") along any row, column, or main diagonal.
a(n) is given by a quasipolynomial of period 6. (End)

Examples

			a(5) = 8 because there are 8 3 X 3 magic squares with entries 1,...,9 and magic sum 15.
		

Crossrefs

Equals 8 times the second differences of A055328.

Programs

  • Magma
    I:=[0,0,0,0,8,24]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Sep 01 2018
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 8, 24}, 50] (* Jean-François Alcover, Sep 01 2018 *)
    CoefficientList[Series[8 x^4 (1 + 2 x) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 01 2018 *)
  • PARI
    a(n)=(1/9)*(2*n^2-32*n+[144,78,120,126,96,102][(n%18)/3+1])
    
  • PARI
    x='x+O('x^99); concat(vector(4), Vec(8*x^5*(1+2*x)/((1-x)*(1-x^2)*(1-x^3)))) \\ Altug Alkan, Sep 01 2018
    

Formula

G.f.: [8*x^5*(1+2*x)] / [(1-x)*(1-x^2)*(1-x^3)].
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - Vincenzo Librandi, Sep 01 2018

Extensions

Edited by N. J. A. Sloane, Feb 05 2010
Corrected g.f. to account for previous change in parameter n from magic sum s to s/3; by Thomas Zaslavsky, Mar 12 2010

A174257 Number of symmetry classes of 3 X 3 reduced magic squares with distinct values and maximum value 2n; also, with magic sum 3n.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 3, 3, 3, 4, 5, 4, 6, 6, 6, 7, 8, 7, 9, 9, 9, 10, 11, 10, 12, 12, 12, 13, 14, 13, 15, 15, 15, 16, 17, 16, 18, 18, 18, 19, 20, 19, 21, 21, 21, 22, 23, 22, 24, 24, 24, 25, 26, 25, 27, 27, 27, 28, 29, 28, 30, 30, 30, 31, 32, 31, 33, 33, 33, 34, 35, 34, 36, 36, 36, 37
Offset: 1

Author

Thomas Zaslavsky, Mar 14 2010

Keywords

Comments

In a reduced magic square the row, column, and two diagonal sums must all be equal (the "magic sum") and the minimum entry is 0. The maximum entry is necessarily even and = (2/3)*(magic sum). The symmetries are those of the square.
a(n) is a quasipolynomial with period 6.
The second differences of A108577 are a(n/2) for even n and 0 for odd n. The first differences of A108579 are a(n/3).
For n>=3 equals a(n) the number of partitions of n-3 using parts 1 and 2 only, with distinct multiplicities. Example: a(7) = 3 because [2,2], [2,1,1], [1,1,1,1] are such partitions of 7-3=4. - T. Amdeberhan, May 13 2012
a(n) is equal to the number of partitions of n of length 3 with exactly two equal entries (see below example). - John M. Campbell, Jan 29 2016
a(k) + 2 =:t(k), k >= 1, based on sequence A300069, is used to obtain for 2^t(k)*O_{-k} integer coordinates in the quadratic number field Q(sqrt(3)), where O_{-k} is the center of a k-family of regular hexagons H_{-k} forming part of a discrete spiral. See the linked W. Lang paper, Lemma 5, and Table 7. - Wolfdieter Lang, Mar 30 2018
a(n) is equal to the number of incongruent isosceles triangles (excluding equilateral triangles) formed from the vertices of a regular n-gon. - Frank M Jackson, Oct 30 2022

Examples

			From _John M. Campbell_, Jan 29 2016: (Start)
For example, there are a(16)=7 partitions of 16 of length 3 with exactly two equal entries:
  (14,1,1) |- 16
  (12,2,2) |- 16
  (10,3,3) |- 16
   (8,4,4) |- 16
   (7,7,2) |- 16
   (6,6,4) |- 16
   (6,5,5) |- 16
(End)
		

Crossrefs

Programs

  • Maple
    seq(floor((n-1)/2)+floor((n-1)/3)-floor(n/3),n=1..100) # Mircea Merca, May 14 2013
  • Mathematica
    Rest@ CoefficientList[Series[x^4 (1 + 2 x)/((1 + x) (1 + x + x^2) (x - 1)^2), {x, 0, 76}], x] (* Michael De Vlieger, Jan 29 2016 *)
    Table[Length@Select[Length/@Union/@IntegerPartitions[n, {3}], # == 2 &], {n,
      1, 100}] (* Frank M Jackson, Oct 30 2022 *)
  • PARI
    concat(vector(3), Vec(x^4*(1+2*x) / ( (1+x)*(1+x+x^2)*(x-1)^2 ) + O(x^90))) \\ Michel Marcus, Jan 29 2016

Formula

G.f.: x^4*(1+2*x) / ( (1+x)*(1+x+x^2)*(x-1)^2 ).
a(n) = (1/8)*A174256(n).
a(n) = floor((n-1)/2) + floor((n-1)/3) - floor(n/3). - Mircea Merca, May 14 2013
a(n) = A300069(n-1) + 3*floor((n-1)/6), n >= 1. Proof via g.f.. - Wolfdieter Lang, Feb 24 2018
a(n) = (6*n - 13 - 8*cos(2*n*Pi/3) - 3*cos(n*Pi))/12. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Information added to name and comments by Thomas Zaslavsky, Apr 24 2010

A173546 Number of 3 X 3 semimagic squares with distinct positive values < n. In a semimagic squares the row and column sums must all be equal (the "magic sum").

Original entry on oeis.org

72, 288, 936, 2592, 5760, 11520, 20952, 35712, 57168, 88272, 131112, 189504, 265752, 365760, 492480, 653040, 851472, 1096416, 1392768, 1751904, 2178864, 2687184, 3283632, 3983760, 4794984, 5736528, 6816456, 8056224, 9466128
Offset: 10

Author

Thomas Zaslavsky, Feb 21 2010

Keywords

Comments

a(n) is given by a quasipolynomial of degree 5 and period 60.

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

A173547 counts the same squares by magic sum.

Formula

G.f.: 72 * x^2/(1-x)^2 * { x^5/[(1-x)^3*(1-x^2)] - 2x^5/[(1-x)*(1-x^2)^2] - x^5/[(1-x)^2*(1-x^3)] - 2x^6/[(1-x)*(1-x^2)*(1-x^3)] - x^6/(1-x^2)^3 - x^7/[(1-x^2)^2*(1-x^3)] + x^5/[(1-x)*(1-x^4)] + 2x^5/[(1-x^2)*(1-x^3)] + 2x^6/[(1-x^2)*(1-x^4)] + x^6/(1-x^3)^2 + x^7/[(1-x^2)*(1-x^5)] + x^7/[(1-x^3)*(1-x^4)] + x^8/[(1-x^3)*(1-x^5)] - x^5/(1-x^5) }. - Thomas Zaslavsky, Mar 03 2010

A173547 Number of 3 X 3 semimagic squares with distinct positive values and magic sum n.

Original entry on oeis.org

72, 144, 288, 576, 864, 1440, 2088, 3024, 3888, 5904, 6984, 9432, 12168, 14904, 17928, 23832, 26784, 33048, 39672, 46584, 53640, 65592, 72504, 85248, 98928, 111816, 125208, 147528, 160632, 182808, 206424, 229176, 252648, 287928, 310752
Offset: 15

Author

Thomas Zaslavsky, Feb 21 2010, Feb 24 2010, Mar 03 2010

Keywords

Comments

In a semimagic squares the row and column sums must all be equal to the magic sum. a(n) is given by a quasipolynomial of degree 4 and period 840.
a(15) is the first term because the values 1,...,9 make magic sum 15. [From Thomas Zaslavsky, Mar 03 2010]

References

  • Matthias Beck and Thomas Zaslavsky, An enumerative geometry for magic and magilatin labellings, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

Crossrefs

A173546 counts the same squares by upper bound on the entries. Cf. A108576, A108577, A108578, A108579, A173548, A173549.

Formula

G.f.: 72 * x^3/(1-x)^3 * { x^7/[(x-1)*(x^2-1)^3] + 2x^7/[(x-1)*(x^2-1)*(x^4-1)] + x^7/[(x-1)*(x^6-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^3-1)*(x^4-1)] + x^7/(x^7-1) + x^9/[(x-1)*(x^4-1)^2] + 2*x^9/[(x^2-1)*(x^3-1)*(x^4-1)] + 2*x^9/[(x^3-1)*(x^6-1)] + x^9/[(x^4-1)*(x^5-1)] + x^11/[(x^3-1)*(x^4-1)^2] + x^11/[(x^3-1)*(x^8-1)] + x^11/[(x^5-1)*(x^6-1)] + x^13/[(x^5-1)*(x^8-1)] }

A304507 a(n) = 5*(n+1)*(9*n+4).

Original entry on oeis.org

20, 130, 330, 620, 1000, 1470, 2030, 2680, 3420, 4250, 5170, 6180, 7280, 8470, 9750, 11120, 12580, 14130, 15770, 17500, 19320, 21230, 23230, 25320, 27500, 29770, 32130, 34580, 37120, 39750, 42470, 45280, 48180, 51170, 54250, 57420, 60680, 64030, 67470, 71000, 74620
Offset: 0

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

The first Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.

Programs

  • GAP
    List([0..50], n -> 5*(n+1)*(9*n+4)); # Muniru A Asiru, May 15 2018
  • Maple
    seq((5*(n+1))*(9*n+4), n = 0 .. 40);
  • Mathematica
    Array[5 (# + 1) (9 # + 4) &, 41, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {20, 130, 330}, 41] (* or *)
    CoefficientList[Series[10 (2 + 7 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = 5*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(10*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
    

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 10*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 10*A062708(n+1) for n >= 0. - Robert G. Wilson v, May 14 2018
a(n) = 5*A011862(9*n+7) = 5*A108579(6*n+7). - Bruno Berselli, May 15 2018
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 5*A017209(n)*A008587(n+1). (End)

A363839 Numbers in the witch's multiplication table (German: "Hexeneinmaleins") in Goethe's Faust.

Original entry on oeis.org

1, 10, 2, 3, 4, 5, 6, 7, 8, 9, 1, 10, 0, 1
Offset: 1

Author

Georg Fischer, Jun 23 2023

Keywords

Comments

In German, the witch declaims the following magic spell to Faust:
Du mußt verstehn!
Aus Eins[1] mach' Zehn[10],
Und Zwey[2] laß gehn,
Und Drey[3] mach' gleich,
So bist du reich.
Verlier' die Vier[4]!
Aus Fünf[5] und Sechs[6],
So sagt die Hex',
Mach' Sieben[7] und Acht[8],
So ist's vollbracht:
Und Neun[9] ist Eins[1],
Und Zehn[10] ist keins[0].
Das ist das Hexen-Einmal-Eins[1]!
(The numbers in "[...]" do not apppear in the original.)
Literal translation into English:
You must understand!
From one make ten,
And two let go,
And three make equal,
So you are rich.
Lose the four!
From five and six,
So says the witch,
Make seven and eight,
So it is finished:
And nine is one,
And ten is none.
This is the Witch's one-times-one!
.
From Peter Luschny, Jun 23 2023: (Start)
Sometimes the witch's one-times-one is interpreted as a construction guide for a magic square, which describes a transformation like this:
1 2 3 4 9 2
4 5 6 -> 3 5 7
7 8 9 8 1 6
(End)

Crossrefs

Showing 1-9 of 9 results.