cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005317 a(n) = (2^n + C(2*n,n))/2.

Original entry on oeis.org

1, 2, 5, 14, 43, 142, 494, 1780, 6563, 24566, 92890, 353740, 1354126, 5204396, 20066492, 77575144, 300572963, 1166868646, 4537698722, 17672894044, 68923788698, 269129985796, 1052051579012, 4116719558104, 16123810230158, 63205319996092, 247959300028484
Offset: 0

Views

Author

N. J. A. Sloane and Peter Fishburn

Keywords

Comments

Hankel transform is A008619. - Paul Barry, Nov 13 2007
a(n) is the number of lattice paths from (0,0) to (n,n) using E(1,0) and N(0,1) as steps that horizontally cross the diagonal y = x with even many times. For example, a(2) = 5 because there are 6 paths in total and only one of them horizontally crosses the diagonal with odd many times, namely, NEEN. - Ran Pan, Feb 01 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2^n+Binomial(2*n,n))/2: n in [0..26]];  // Bruno Berselli, Jun 20 2011
    
  • Maple
    f := n->(2^n+binomial(2*n,n))/2;
  • Mathematica
    Table[(2^n + Binomial[2 n, n])/2, {n, 0, 26}] (* Michael De Vlieger, Feb 01 2016 *)
  • Maxima
    makelist(sum((-1)^k*binomial(2*n,n-2*k),k,0,floor(n/2)),n,0,26); /* Bruno Berselli, Jun 20 2011 */
    
  • PARI
    a(n)=(2^n+binomial(2*n,n))/2 \\ Charles R Greathouse IV, Dec 20 2011

Formula

From Simon Plouffe, Feb 18 2011: (Start)
G.f.: (1/2)*(-4*x+1+(-(4*x-1)*(2*x-1)^2)^(1/2))/(4*x-1)/(2*x-1).
Recurrence: 0 = (-24-28*n-8*n^2)*a(n+1) + (18+22*n+6*n^2)*a(n+2) + (-3-4*n-n^2)*a(n+3), a(0)=1, a(1)=2, a(2)=5. (End)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(2*n, n-2*k), n > 0. - Mircea Merca, Jun 20 2011
E.g.f.: exp(2*x)*(1+BesselI(0,2*x))/2 = G(0)/2; G(k) = 1 + (k)!/(P-2*x*(2*k+1)*(P^2)/(2*x*(2*k+1)*P+(k+1)^2*k!/G(k+1))), where P:=((2*k)!)/(2^k)/((k)!) (continued fraction). - Sergei N. Gladkovskii, Dec 20 2011
a(n) = Sum_{r=0..n} k*(k+1)/2 where k=C(n,r). - J. M. Bergot, Sep 04 2013
a(n) = binomial(2*n,n) - A108958(n). - Ran Pan, Feb 01 2016
a(n) ~ 2^(2*n-1)/sqrt(n*Pi). - Stefano Spezia, Apr 17 2024

A143418 Triangle read by rows. T(n,k) = binomial(n,k)*(binomial(n,k)-1)/2.

Original entry on oeis.org

1, 3, 3, 6, 15, 6, 10, 45, 45, 10, 15, 105, 190, 105, 15, 21, 210, 595, 595, 210, 21, 28, 378, 1540, 2415, 1540, 378, 28, 36, 630, 3486, 7875, 7875, 3486, 630, 36, 45, 990, 7140, 21945, 31626, 21945, 7140, 990, 45, 55, 1485, 13530, 54285, 106491, 106491
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Aug 14 2008

Keywords

Comments

Row sums = A108958: (1, 6, 27, 110, 430, 1652, ...).

Examples

			Row 4 of Pascal's triangle (1, 4, 6, 4, 1) with each term squared = (1, 16, 36, 16, 1), then subtracting (1, 4, 6, 4, 1) = (0, 12, 30, 12, 0). Dividing by 2 and deleting the zeros, we get row 4 of A143418: (6, 15, 6).
First few rows of the triangle =
1;
3, 3;
6, 15, 6;
10, 45, 45, 10;
15, 105, 190, 105, 15;
21, 210, 595, 595, 210, 21;
28, 378, 1540, 2415, 1540, 378, 28;
...
		

Crossrefs

Programs

  • Maple
    A143418 := proc(n,k)
            binomial(n,k)*(binomial(n,k)-1)/2 ;
    end proc:
    seq(seq(A143418(n,k),k=1..n-1),n=1..12) ; # R. J. Mathar, Apr 04 2012
  • Mathematica
    Table[Binomial[n,k] (Binomial[n,k]-1)/2,{n,20},{k,n-1}]//Flatten (* Harvey P. Dale, Jun 14 2021 *)

Formula

T(n,k) = A065420(n-1,k-1)/2. - R. J. Mathar, Apr 04 2012

Extensions

Corrected by Harvey P. Dale, Jun 14 2021

A143420 Row sums of triangle A373101.

Original entry on oeis.org

1, 8, 55, 370, 2520, 17472, 123151, 880070, 6360706, 46402312, 341153384, 2524722928, 18789734496, 140521154048, 1055383259791, 7956220907758, 60179579570382, 456545145078408, 3472804505717170
Offset: 2

Views

Author

Gary W. Adamson, Aug 14 2008

Keywords

Comments

Each term in the sequence is a sum of tetrahedral numbers.
The underlying triangle mentioned as A143419 was lost and is now restored in A373101. - Georg Fischer, May 23 2024

Examples

			a(5) = 370 = (20 + 165 + 165 + 20) = C(6,3) + C(11,3) + C(11,8) + C(6,3).
		

Crossrefs

Cf. A108958 (row sums of A143418), A373101.

Programs

  • Maple
    seq(add((binomial(n,k)^3 - binomial(n,k))/6,k=1..n-1),n=2..20); # Georg Fischer, May 23 2024

Extensions

Definition changed, a(7) corrected and more terms from Georg Fischer, May 23 2024
Showing 1-3 of 3 results.