A259776
Number A(n,k) of permutations p of [n] with no fixed points and displacement of elements restricted by k: 1 <= |p(i)-i| <= k, square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 4, 0, 0, 1, 0, 1, 2, 9, 6, 1, 0, 1, 0, 1, 2, 9, 24, 13, 0, 0, 1, 0, 1, 2, 9, 44, 57, 24, 1, 0, 1, 0, 1, 2, 9, 44, 168, 140, 45, 0, 0, 1, 0, 1, 2, 9, 44, 265, 536, 376, 84, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 2, 2, 2, 2, 2, 2, ...
0, 1, 4, 9, 9, 9, 9, 9, ...
0, 0, 6, 24, 44, 44, 44, 44, ...
0, 1, 13, 57, 168, 265, 265, 265, ...
0, 0, 24, 140, 536, 1280, 1854, 1854, ...
Columns k=0-10 give:
A000007,
A059841,
A033305,
A079997,
A259777,
A259778,
A259779,
A259780,
A259781,
A259782,
A259783.
-
b:= proc(n, s, k) option remember; `if`(n=0, 1, `if`(n+k in s,
b(n-1, (s minus {n+k}) union `if`(n-k>1, {n-k-1}, {}), k),
add(`if`(j=n, 0, b(n-1, (s minus {j}) union
`if`(n-k>1, {n-k-1}, {}), k)), j=s)))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(n, {$max(1, n-k)..n}, k)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, s_, k_] := b[n, s, k] = If[n==0, 1, If[MemberQ[s, n+k], b[n-1, Join[s ~Complement~ {n+k}] ~Union~ If[n-k>1, {n-k-1}, {}], k], Sum[If[j==n, 0, b[n -1, Join[s ~Complement~ {j}] ~Union~ If[n-k>1, {n-k-1}, {}], k]], {j, s}]] ];
A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Range[Max[1, n-k], n], k]];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
Original entry on oeis.org
1, 2, 5, 16, 56, 202, 741, 2752, 10318, 38972, 148070, 565280, 2166646, 8332378, 32136205, 124249856, 481433286, 1868972828, 7267804550, 28304698336, 110383060776, 431000853028, 1684754608210, 6592277745536, 25818887839956
Offset: 0
-
List([0..30], n -> Sum([0..n], k -> Sum([0..n], j -> (-1)^(n-j)* Binomial(j, n-k)*Binomial(j, k) ))) # G. C. Greubel, Feb 22 2019
-
[(&+[ (&+[(-1)^(n-j)*Binomial(j,n-k)*Binomial(j,k): j in [0..n]]): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 21 2019
-
a:=n->add(add(binomial(j,n-k)*binomial(j,k)*(-1)^(n-j),j=0..n),k=0..n): seq(a(n),n=0..30); # Muniru A Asiru, Jan 23 2019
-
f[n_]:= (-1)^n*Sum[Binomial[n+k, k] Cos[Pi(n+k)/2], {k, 0, n}]; Array[f, 24, 0] (* Robert G. Wilson v, Apr 02 2012 *)
-
{a(n) = sum(k=0,n, sum(j=0,n, (-1)^(n-j)*binomial(j,n-k)* binomial(j,k))) };vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 21 2019
-
a(n) = {my(v = vector(n, k, I^k)); for (k=1, n-1, v = vector(n, i, sum(j=1, i, v[j]));); -real(v[n]);} \\ Michel Marcus, Feb 25 2019
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-2*k, n)); \\ Seiichi Manyama, Jan 29 2023
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+x^2*(2/(1+sqrt(1-4*x)))^2))) \\ Seiichi Manyama, Jan 29 2023
-
[sum(sum((-1)^(n-j)*binomial(j,n-k)*binomial(j,k) for j in (0..n)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 21 2019
A108958
Number of unordered pairs of distinct length-n binary words having the same number of 1's.
Original entry on oeis.org
0, 1, 6, 27, 110, 430, 1652, 6307, 24054, 91866, 351692, 1350030, 5196204, 20050108, 77542376, 300507427, 1166737574, 4537436578, 17672369756, 68922740122, 269127888644, 1052047384708, 4116711169496, 16123793452942, 63205286441660, 247959232919620, 973469645715192
Offset: 1
a(3) = 6 because the pairs are {001,010}, {001,100}, {010,100}, {011,101}, {011,110}, {101,110}.
- Michael De Vlieger, Table of n, a(n) for n = 1..1664
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
[Binomial(2*n,n)-(2^n+Binomial(2*n,n))/2: n in [1..30]]; // Vincenzo Librandi, Feb 01 2016
-
with(combinat) a:= proc(n) add(binomial(binomial(n,k), 2), k=0..n) end;
-
Table[Binomial[2 n, n] - (2^n + Binomial[2 n, n])/2, {n, 30}] (* Vincenzo Librandi, Feb 01 2016 *)
-
a(n)=binomial(2*n-1,n-1)-2^(n-1) \\ Charles R Greathouse IV, Feb 01 2016
-
from math import comb
def A108958(n): return comb((n<<1)-1,n-1)-(1<Chai Wah Wu, Sep 23 2022
A259783
Number of permutations p of [n] with no fixed points and displacement of elements restricted by ten: 1 <= |p(i)-i| <= 10.
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 145510740, 1314803006, 11013531389, 87155940048, 663875231097, 4947896842392, 36563337902968, 270617834212996, 2021217246729905, 15317729587621252, 118254506519672137, 924131987256868248
Offset: 0
A191993
a(n) = 3^(n-1) + C(2*n, n)/2.
Original entry on oeis.org
2, 6, 19, 62, 207, 705, 2445, 8622, 30871, 112061, 411765, 1529225, 5731741, 21652623, 82341729, 314889102, 1209849831, 4666707813, 18060052389, 70085525877, 272615721621, 1062509835063, 4148096423409, 16217945020377, 63487732755357, 248806555083495
Offset: 1
a(5) = 3^4 + C(10,5)/2 = 81 + 126 = 207.
A107105
Triangle, read by rows, where T(n,k) = C(n,k)*(C(n,k) + 1)/2, n>=k>=0.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 210, 120, 21, 1, 1, 28, 231, 630, 630, 231, 28, 1, 1, 36, 406, 1596, 2485, 1596, 406, 36, 1, 1, 45, 666, 3570, 8001, 8001, 3570, 666, 45, 1, 1, 55, 1035, 7260, 22155, 31878, 22155, 7260
Offset: 0
Triangle begins:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,21,10,1;
1,15,55,55,15,1;
1,21,120,210,120,21,1;
1,28,231,630,630,231,28,1; ...
-
Table[Binomial[n,k] (Binomial[n,k]+1)/2,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jul 20 2025 *)
-
T(n,k)=binomial(n,k)*(binomial(n,k)+1)/2
A360211
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n-3*k,n-2*k).
Original entry on oeis.org
1, 2, 5, 17, 61, 221, 812, 3021, 11344, 42899, 163146, 623320, 2390653, 9198879, 35494701, 137290466, 532149805, 2066501909, 8038146035, 31312535610, 122140123201, 477002869614, 1864912495716, 7298427590543, 28588888586743, 112080607196843, 439744801379594
Offset: 0
-
A360211 := proc(n)
add((-1)^k*binomial(2*n-3*k,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A360211(n),n=0..40) ; # R. J. Mathar, Mar 02 2023
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n-3*k, n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1+2*x^2/(1+sqrt(1-4*x)))))
A307668
A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j*binomial(2*n,k*j+n), square array A(n,k) read by antidiagonals, for n >= 0, k >= 1.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 2, 5, 10, 1, 2, 6, 14, 35, 1, 2, 6, 19, 43, 126, 1, 2, 6, 20, 62, 142, 462, 1, 2, 6, 20, 69, 207, 494, 1716, 1, 2, 6, 20, 70, 242, 705, 1780, 6435, 1, 2, 6, 20, 70, 251, 858, 2445, 6563, 24310, 1, 2, 6, 20, 70, 252, 912, 3068, 8622, 24566, 92378
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, ...
3, 5, 6, 6, 6, 6, 6, ...
10, 14, 19, 20, 20, 20, 20, ...
35, 43, 62, 69, 70, 70, 70, ...
126, 142, 207, 242, 251, 252, 252, ...
462, 494, 705, 858, 912, 923, 924, ...
1716, 1780, 2445, 3068, 3341, 3418, 3431, ...
6435, 6563, 8622, 11051, 12310, 12750, 12854, ...
-
T[n_, k_] := Sum[(-1)^j*Binomial[2*n, k*j + n], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 13 2021*)
Showing 1-8 of 8 results.
Comments