cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108300 a(n+2) = 3*a(n+1) + a(n), with a(0) = 1, a(1) = 5.

Original entry on oeis.org

1, 5, 16, 53, 175, 578, 1909, 6305, 20824, 68777, 227155, 750242, 2477881, 8183885, 27029536, 89272493, 294847015, 973813538, 3216287629, 10622676425, 35084316904, 115875627137, 382711198315, 1264009222082, 4174738864561, 13788225815765, 45539416311856
Offset: 0

Views

Author

Creighton Dement, Jul 24 2005

Keywords

Comments

Binomial transform is A109114.
Invert transform is A109115.
Inverse invert transform is A016777.
Inverse binomial transform is A006130.

Crossrefs

Row sums and main diagonal of A143972. - Gary W. Adamson, Sep 06 2008

Programs

  • Maple
    seriestolist(series((-2*x-1)/(x^2-1+3*x), x=0,25));
  • Mathematica
    LinearRecurrence[{3,1},{1,5},40] (* Harvey P. Dale, Jul 04 2013 *)
  • PARI
    Vec((1 + 2*x)/(1 - 3*x - x^2) + O(x^30)) \\ Andrew Howroyd, Jun 05 2021

Formula

G.f.: (1 + 2*x)/(1 - 3*x - x^2).
a(n) = A052924(n+1) - A052924(n).
a(n)*a(n-2) = a(n-1)^2 + 9*(-1)^n. - Roger L. Bagula, May 17 2010
a(n) = 3^n*Sum_{k=0..n} A374439(n, k)*(1/3)^k. - Peter Luschny, Jul 26 2024

A154245 a(n) = ( (4 + sqrt(7))^n - (4 - sqrt(7))^n )/(2*sqrt(7)).

Original entry on oeis.org

1, 8, 55, 368, 2449, 16280, 108199, 719072, 4778785, 31758632, 211059991, 1402652240, 9321678001, 61949553848, 411701328775, 2736064645568, 18183205205569, 120841059834440, 803079631825399, 5337067516093232
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Second binomial transform of A109115.
Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(7) = 6.6457513110....

Crossrefs

Equals (A094432 without initial term 0)/3.
Cf. A010465 (decimal expansion of square root of 7), A109115.

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, May 21 2019
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-7); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 08 2016
    
  • Mathematica
    Table[Simplify[((4+Sqrt[7])^n -(4-Sqrt[7])^n)/(2*Sqrt[7])], {n, 30}] (* or *) LinearRecurrence[{8, -9},{1, 8}, 30] (* G. C. Greubel, Sep 07 2016 *)
    Rest@ CoefficientList[Series[x/(1 -8x +9x^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( x/(1-8*x+9*x^2) ) \\ G. C. Greubel, May 21 2019
    
  • Sage
    [lucas_number1(n,8,9) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 8*a(n-1) - 9*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x + 9*x^2). (End)
a(n) = b such that (3^(n-1)/2)*Integral_{x=0..Pi/2} (sin(n*x))/(4/3-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
E.g.f.: (1/sqrt(7))*exp(4*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 07 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009

A208340 Triangle of coefficients of polynomials v(n,x) jointly generated with A202390; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 13, 14, 5, 5, 24, 41, 30, 8, 6, 40, 96, 109, 60, 13, 7, 62, 196, 308, 262, 116, 21, 8, 91, 364, 743, 868, 590, 218, 34, 9, 128, 630, 1604, 2413, 2240, 1267, 402, 55, 10, 174, 1032, 3186, 5926, 7046, 5424, 2627, 730, 89, 11, 230, 1617
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2012

Keywords

Comments

v(n,n) = F(n+1), where F=A000045, the Fibonacci numbers.
Alternating row sums of v: (1,0,0,0,0,0,0,0,...).
As triangle T(n,k) with 0 <= k <= n, it is (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			First five rows:
  1;
  2,  2;
  3,  6,  3;
  4, 13, 14,  5;
  5, 24, 41, 30,  8;
The first five polynomials v(n,x):
  1
  2 +  2x
  3 +  6x +  3x^2
  4 + 13x + 14x^2 +  5x^3
  5 + 24x + 41x^2 + 30x^3 + 8x^4
		

Crossrefs

Cf. A202390.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A202390 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208340 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* u row sums *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* v row sums *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* u alt. row sums *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* v alt. row sums *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x), where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 28 2012: (Start)
As triangle T(n,k) with 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2) with T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+y*x)/(1-2*x-y*x+x^2-y^2*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000027(n+1), A003946(n), A109115(n), A180031(n) for x = -1, 0, 1, 2, 3 respectively. (End)
Showing 1-3 of 3 results.