cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A078892 Numbers n such that phi(n) - 1 is prime, where phi is Euler's totient function (A000010).

Original entry on oeis.org

5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 45, 49, 50, 51, 52, 54, 56, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 77, 78, 80, 81, 84, 86, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 109, 111, 112, 117
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

For all primes p: p is in the sequence iff p is the greater member of a twin prime pair (A006512), see A078893.
Union of A006512 and A078893. - Ray Chandler, May 26 2008

Crossrefs

Programs

A078893 Composite numbers k such that phi(k) - 1 is prime, where phi is Euler's totient function (A000010).

Original entry on oeis.org

8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 30, 33, 35, 36, 38, 39, 42, 44, 45, 49, 50, 51, 52, 54, 56, 62, 64, 65, 66, 68, 69, 70, 72, 77, 78, 80, 81, 84, 86, 90, 91, 92, 93, 95, 96, 98, 99, 102, 104, 105, 111, 112, 117, 120, 121, 122, 123, 124, 129, 130, 133
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

A078892 with the primes removed. - Ray Chandler, May 26 2008

Crossrefs

Programs

  • Mathematica
    Select[Range[150],CompositeQ[#]&&PrimeQ[EulerPhi[#]-1]&] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    is(n)=!isprime(n) && isprime(eulerphi(n)-1) \\ Charles R Greathouse IV, Feb 21 2013

A340198 Dirichlet inverse of sequence f(n) = A319340(n)-1 = (A000010(n) + A023900(n) - 1), where A000010 is Euler Totient function phi, and A023900 is its Dirichlet inverse.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, -1, -2, -5, 1, -8, 1, -9, -13, -9, 1, -16, 1, -22, -21, -17, 1, -28, -14, -21, -20, -36, 1, -43, 1, -31, -37, -29, -45, -49, 1, -33, -45, -62, 1, -67, 1, -64, -64, -41, 1, -69, -34, -64, -61, -78, 1, -68, -77, -96, -69, -53, 1, -88, 1, -57, -96, -79, -93, -115, 1, -106, -85, -123, 1, -95, 1, -69
Offset: 1

Views

Author

Antti Karttunen, Jan 05 2021

Keywords

Comments

Conversely, the Dirichlet inverse of this sequence yields a sequence which is one less than A319340, i.e., pointwise sum s(n) = A109606(n) + A023900(n).
a(9796) = 0 is the only zero among the first 2^22 terms.

Crossrefs

Programs

  • PARI
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    A319340(n) = (eulerphi(n)+A023900(n));
    A340198(n) = if(1==n,1,-sumdiv(n,d,if(dA319340(n/d)-1)*A340198(d),0)));

Formula

a(1) = 1, for n > 1, a(n) = -Sum_{d|n, dA319340(n/d)-1) * a(d).

A214287 Primes of the form phi(n)-1 sorted by increasing n, where phi is the Euler totient function.

Original entry on oeis.org

3, 5, 3, 5, 3, 3, 11, 5, 7, 7, 5, 17, 7, 11, 7, 19, 11, 17, 11, 7, 29, 19, 23, 11, 17, 23, 11, 41, 19, 23, 41, 19, 31, 23, 17, 23, 59, 29, 31, 47, 19, 31, 43, 23, 23, 71, 59, 23, 31, 53, 23, 41, 23, 71, 43, 59, 71, 31, 41, 59, 31, 101, 47, 47, 107, 71, 47, 71, 31, 109, 59, 79, 59, 83
Offset: 1

Views

Author

Vincenzo Librandi, Jul 13 2012

Keywords

Comments

Primes in A109606.

Crossrefs

Cf. A000010, A078892 (associated n), A214288.

Programs

  • Mathematica
    Select[Table[EulerPhi[n]-1,{n,1,1000}],PrimeQ]

A336191 Numbers k of the form k = ab (the decimal concatenation of a and b) such that phi(ab) = a*b + 1.

Original entry on oeis.org

57, 195, 319, 5595, 11709, 77097, 114765, 1313667, 1348559, 4752465, 10219099, 11031119, 185573199, 2918945715, 3165616929, 12233666703, 16996664613, 18052811909, 20650199699, 38081370319, 58943659521, 195823876095, 236323024041, 242687655369, 342764528277, 677924155713
Offset: 1

Views

Author

M. Farrokhi D. G., Jul 11 2020

Keywords

Comments

Is the sequence infinite?

Examples

			phi(57) = 5 * 7 + 1
phi(195) = 1 * 95 + 1 = 19 * 5 + 1
phi(319) = 31 * 9 + 1
phi(5595) = 5 * 595 + 1
phi(11709) = 11 * 709 + 1
phi(77097) = 7 * 7097 + 1
phi(114765) = 11 * 4765 + 1
phi(1313667) = 1313 * 667 + 1
phi(1348559) = 134855 * 9 + 1
phi(4752465) = 47 * 52465 + 1
phi(10219099) = 1021 * 9099 + 1
phi(11031119) = 1103111 * 9 + 1
phi(185573199) = 185 * 573199 + 1
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := Module[{d = IntegerDigits[n]}, MemberQ[Times @@@ Table[FromDigits /@ {Take[d, k], Take[d, -Length[d] + k]}, {k, 1, Length[d] - 1}], EulerPhi[n] - 1]]; Select[Range[10, 10^5], seqQ] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    isok(m) = {my(tm=eulerphi(m)-1, d=digits(m)); for (i=1, #d-1, if (fromdigits(vector(i, k, d[k]))*fromdigits(vector(#d-i, k, d[i+k])) == tm, return(1)););} \\ Michel Marcus, Jul 11 2020

Extensions

Missing terms 1348559 & 4752465, and a(12) from Amiram Eldar, Jul 11 2020
More terms from Giovanni Resta, Jul 13 2020

A291880 Numbers n such that phi(n) - 1 | sigma(n).

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 20, 22, 40, 76, 80, 108, 160, 204, 320, 640, 1072, 1280, 2560, 4192, 5120, 10240, 20480, 40960, 49344, 81920, 163840, 327680, 655360, 1310720, 2621440, 4197376, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 268460032, 335544320, 671088640, 1073790976, 1342177280, 2684354560, 5368709120
Offset: 1

Views

Author

Paolo P. Lava, Sep 05 2017

Keywords

Comments

Numbers n such that A109606(n) | A000203(n).
All numbers of the form 5*2^x, with x >= 0, are part of the sequence (A020714).
Values of the ratio sigma(n)/(phi(n)-1) are 4, 7, 2, 12, 5, 6, 6, 4, 6, 4, 6, 8, 6, 8, 6, 6, 4, 6, 6, 4, 6, 6, 6, 6, 8, 6, 6, 6, 6, 6, 6, 4, 6, ...
Sequence contains also terms of the form 2^(n-2)*(2^n+3) where 2^n+3 is a prime and n > 3, like 22, 76, 1072, 4192, 4197376, 268460032. See A057733 for primes of the form 2^n+3. - Michel Marcus, Sep 17 2017

Examples

			sigma(1072) = 2108, phi(1072) = 528 and 2108/(528 - 1) = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n; for n from 3 to q do
    if type(sigma(n)/(phi(n)-1),integer) then  print(n); fi; od;  end: P(10^7);
  • Mathematica
    Select[Range[3, 10^6], Divisible[DivisorSigma[1, #], EulerPhi[#] - 1] &] (* Michael De Vlieger, Sep 06 2017 *)
  • PARI
    isok(n) = denominator(sigma(n)/(eulerphi(n)-1)) == 1; \\ Michel Marcus, Sep 06 2017

Extensions

a(34)-a(41) from Michel Marcus, Sep 15 2017
a(42)-a(45) from Michel Marcus, Sep 21 2017
Showing 1-6 of 6 results.