A112332
a(n) = Product_{k=0..n-1} k!*binomial(2k,k).
Original entry on oeis.org
1, 1, 2, 24, 2880, 4838400, 146313216000, 97339256340480000, 1683704371913057894400000, 873705178746128941669416960000000, 15414977576506278044562764045746176000000000, 10334857226047177887548812577909403133201612800000000000
Offset: 0
-
seq(mul(mul((j+k),j=1..k), k=1..n), n=-1..9); # Zerinvary Lajos, Sep 21 2007
-
Table[Product[(2*k)!/k!,{k,0,n-1}],{n,0,10}] (* Vaclav Kotesovec, Jul 11 2015 *)
A296591
a(n) = Product_{k=0..n} (n + k)!.
Original entry on oeis.org
1, 2, 288, 12441600, 421382062080000, 23120161750363668480000000, 3683853104727992382799761899520000000000, 2777528195026874073410445622205453260145295360000000000000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
a(n-1) *(2*n-1)! *(2*n)! /(n-1)!)
end:
seq(a(n), n=0..7); # Alois P. Heinz, Jul 11 2024
-
Table[Product[(n + k)!, {k, 0, n}], {n, 0, 10}]
Table[Product[(2*n - k)!, {k, 0, n}], {n, 0, 10}]
Table[BarnesG[2*n + 2]/BarnesG[n + 1], {n, 0, 10}]
A355400
Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.
Original entry on oeis.org
1, 1, 3, 30, 1001, 111384, 41314284, 51067020290, 210309203300625, 2885318087540733000, 131857099297936066411200, 20070377346929658409924542720, 10174783866874800701945612292557712, 17178820188393063395267380511228827387600, 96592800670609299321035523895170598736583965100
Offset: 0
a(0) = 1: ( ).
a(1) = 1: (/\).
a(2) = 3: /\ /\ /\
(/\/\, /\/\), (/\/\, / \), (/ \, / \).
G.f. = 1 + x + 3*x^2 + 30*x^3 + 1001*x^4 + 111384*x^5 + 41314284*x^6 + ... - _Michael Somos_, Jun 27 2023
-
a:= n-> mul(mul((i+j+2*n)/(i+j), j=i..n-1), i=1..n-1):
seq(a(n), n=0..14);
-
Join[{1}, Table[Sqrt[2*BarnesG[4*n]] * BarnesG[n] * Gamma[2*n]^(3/2) / BarnesG[3*n + 1], {n, 1, 12}]] (* Vaclav Kotesovec, Aug 26 2023 *)
-
a(n) = prod(i=1, n-1, prod(j=i, n-1, (i+j+2*n)/(i+j))); \\ Michel Marcus, Jul 05 2022
A296589
a(n) = Product_{k=0..n} binomial(2*n, k).
Original entry on oeis.org
1, 2, 24, 1800, 878080, 2857680000, 63117561830400, 9577928124440387712, 10077943267571584204800000, 74054886893191804566576837427200, 3822038592032831128918160803430400000000, 1391938996758770867922655936144556115037409280000
Offset: 0
-
Table[Product[Binomial[2*n, k], {k, 0, n}], {n, 0, 12}]
Table[((2*n)!)^(n+1) / (n! * BarnesG[2*n + 2]), {n, 0, 12}]
A296590
a(n) = Product_{k=0..n} binomial(2*n - k, k).
Original entry on oeis.org
1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0
Cf.
A001142,
A007685,
A086205,
A098694,
A110131,
A112332,
A203471,
A268196,
A296589,
A296591,
A338550.
-
A296590 := proc(n)
mul( binomial(2*n-k,k),k=0..n) ;
end proc:
seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
-
Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]
A107252
a(n) = Product_{k=0..n-1} (n+k)!/(k+1)!.
Original entry on oeis.org
1, 1, 6, 1440, 36288000, 184354652160000, 309071606732292096000000, 254046582743105184577722777600000000, 142518177743863255019484504453155074867200000000000
Offset: 0
a(3) = 1!*2!*3!*4!*5!/(1!*2!*3!*1!*2!) = 34560/24 = 1440.
-
[1] cat [(&*[Factorial(n+k)/Factorial(k+1): k in [0..n-1]]): n in [1..10]]; // G. C. Greubel, May 21 2019
-
Table[Product[(n+k)!/(k+1)!,{k,0,n-1}],{n,0,10}] (* Alexander Adamchuk, Jul 10 2006 *)
a[n_] := (BarnesG[1 + 2 n] n! ((BarnesG[2 + n] Gamma[2 + n])/ BarnesG[3 + n])^(-1 + n))/BarnesG[2 + n]^2; Table[a[n], {n, 0, 10}] (* Peter Luschny, May 20 2019 *)
-
{a(n) = prod(k=0,n-1, (n+k)!/(k+1)!)}; \\ G. C. Greubel, May 21 2019
-
[product(factorial(n+k)/factorial(k+1) for k in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 21 2019
Showing 1-6 of 6 results.
Comments