A007685
a(n) = Product_{k=1..n} binomial(2*k,k).
Original entry on oeis.org
1, 2, 12, 240, 16800, 4233600, 3911846400, 13425456844800, 172785629592576000, 8400837310791045120000, 1552105098192510332190720000, 1094904603628138948657963991040000, 2960792853328653706847125274154762240000, 30794022150329995743434211126374020153344000000
Offset: 0
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..50
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
-
[seq(mul(binomial(2*k,k),k=1..n),n=0..16)];
-
Table[Product[Binomial[2*k, k], {k, 1, n}], {n, 0, 50}] (* G. C. Greubel, Feb 02 2017 *)
-
a(n) = prod(k=1,n, binomial(2*k, k)); \\ Michel Marcus, Sep 18 2015
A268196
a(n) = Product_{k=0..n} binomial(3*k,k).
Original entry on oeis.org
1, 3, 45, 3780, 1871100, 5618913300, 104309506501200, 12129109415959536000, 8920608231265175901456000, 41809329673499408044341517200000, 1256161937180234817183361549396758000000, 243113461110708695347467432844366521953760000000
Offset: 0
-
Table[Product[Binomial[3k,k],{k,0,n}],{n,0,12}]
FoldList[Times,Table[Binomial[3n,n],{n,0,15}]] (* Harvey P. Dale, Apr 23 2018 *)
A306594
a(n) = Product_{i=1..n, j=1..n, k=1..n} (i + j + k).
Original entry on oeis.org
1, 3, 144000, 455282248974336000000, 9608917807566747651759509633033255126040576000000000000
Offset: 0
-
a:= n-> mul(mul(mul(i+j+k, i=1..n), j=1..n), k=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i+j+k, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 6}]
Table[Product[k^(3*(n - k + 1) (n - k + 2)/2), {k, 1, n}] * Product[k^((3*n - k + 1) (3*n - k + 2)/2), {k, 1, 3*n}] / Product[k^(3*(2*n - k + 1) (2*n - k + 2)/2), {k, 1, 2*n}], {n, 1, 6}]
Clear[a]; a[n_] := a[n] = If[n == 1, 3, 3*n*a[n-1] * BarnesG[2+n]^3 * BarnesG[2+3*n]^3 * Gamma[1+2*n]^3 / (BarnesG[2+2*n]^6 * Gamma[1+3*n]^3)]; Table[a[n], {n, 1, 6}] (* Vaclav Kotesovec, Mar 28 2019 *)
A296591
a(n) = Product_{k=0..n} (n + k)!.
Original entry on oeis.org
1, 2, 288, 12441600, 421382062080000, 23120161750363668480000000, 3683853104727992382799761899520000000000, 2777528195026874073410445622205453260145295360000000000000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
a(n-1) *(2*n-1)! *(2*n)! /(n-1)!)
end:
seq(a(n), n=0..7); # Alois P. Heinz, Jul 11 2024
-
Table[Product[(n + k)!, {k, 0, n}], {n, 0, 10}]
Table[Product[(2*n - k)!, {k, 0, n}], {n, 0, 10}]
Table[BarnesG[2*n + 2]/BarnesG[n + 1], {n, 0, 10}]
A110131
Determinant of n X n matrix M_{i,j} = 2^i*P_i(j), where P_i(j) is the Legendre polynomial of order i at j and i and j are 0-based.
Original entry on oeis.org
1, 2, 24, 2880, 4838400, 146313216000, 97339256340480000, 1683704371913057894400000, 873705178746128941669416960000000, 15414977576506278044562764045746176000000000, 10334857226047177887548812577909403133201612800000000000
Offset: 1
-
seq(mul(mul((j+k),j=1..k), k=1..n-1), n=1..9); # Zerinvary Lajos, Sep 21 2007
-
a(n)=my(t=1);prod(k=1,n-1,t*=4*k-2) \\ Charles R Greathouse IV, Oct 25 2011
-
a(n)=matdet(matrix(n,n,i,j,pollegendre(i-1,j-1)<<(i-1))) \\ Charles R Greathouse IV, Oct 25 2011
A355400
Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.
Original entry on oeis.org
1, 1, 3, 30, 1001, 111384, 41314284, 51067020290, 210309203300625, 2885318087540733000, 131857099297936066411200, 20070377346929658409924542720, 10174783866874800701945612292557712, 17178820188393063395267380511228827387600, 96592800670609299321035523895170598736583965100
Offset: 0
a(0) = 1: ( ).
a(1) = 1: (/\).
a(2) = 3: /\ /\ /\
(/\/\, /\/\), (/\/\, / \), (/ \, / \).
G.f. = 1 + x + 3*x^2 + 30*x^3 + 1001*x^4 + 111384*x^5 + 41314284*x^6 + ... - _Michael Somos_, Jun 27 2023
-
a:= n-> mul(mul((i+j+2*n)/(i+j), j=i..n-1), i=1..n-1):
seq(a(n), n=0..14);
-
Join[{1}, Table[Sqrt[2*BarnesG[4*n]] * BarnesG[n] * Gamma[2*n]^(3/2) / BarnesG[3*n + 1], {n, 1, 12}]] (* Vaclav Kotesovec, Aug 26 2023 *)
-
a(n) = prod(i=1, n-1, prod(j=i, n-1, (i+j+2*n)/(i+j))); \\ Michel Marcus, Jul 05 2022
A296589
a(n) = Product_{k=0..n} binomial(2*n, k).
Original entry on oeis.org
1, 2, 24, 1800, 878080, 2857680000, 63117561830400, 9577928124440387712, 10077943267571584204800000, 74054886893191804566576837427200, 3822038592032831128918160803430400000000, 1391938996758770867922655936144556115037409280000
Offset: 0
-
Table[Product[Binomial[2*n, k], {k, 0, n}], {n, 0, 12}]
Table[((2*n)!)^(n+1) / (n! * BarnesG[2*n + 2]), {n, 0, 12}]
A296590
a(n) = Product_{k=0..n} binomial(2*n - k, k).
Original entry on oeis.org
1, 1, 3, 30, 1050, 132300, 61122600, 104886381600, 674943865596000, 16407885372638760000, 1515727634953623371280000, 534621388490302221024396480000, 722849817707190846398223943885440000, 3759035907022704558524683975387453632000000
Offset: 0
Cf.
A001142,
A007685,
A086205,
A098694,
A110131,
A112332,
A203471,
A268196,
A296589,
A296591,
A338550.
-
A296590 := proc(n)
mul( binomial(2*n-k,k),k=0..n) ;
end proc:
seq(A296590(n),n=0..7) ; # R. J. Mathar, Jan 03 2018
-
Table[Product[Binomial[2*n-k, k], {k, 0, n}], {n, 0, 15}]
Table[Glaisher^(3/2) * 2^(n^2 - 1/24) * BarnesG[n + 3/2] / (E^(1/8) * Pi^(n/2 + 1/4) * BarnesG[n + 2]), {n, 0, 15}]
A107252
a(n) = Product_{k=0..n-1} (n+k)!/(k+1)!.
Original entry on oeis.org
1, 1, 6, 1440, 36288000, 184354652160000, 309071606732292096000000, 254046582743105184577722777600000000, 142518177743863255019484504453155074867200000000000
Offset: 0
a(3) = 1!*2!*3!*4!*5!/(1!*2!*3!*1!*2!) = 34560/24 = 1440.
-
[1] cat [(&*[Factorial(n+k)/Factorial(k+1): k in [0..n-1]]): n in [1..10]]; // G. C. Greubel, May 21 2019
-
Table[Product[(n+k)!/(k+1)!,{k,0,n-1}],{n,0,10}] (* Alexander Adamchuk, Jul 10 2006 *)
a[n_] := (BarnesG[1 + 2 n] n! ((BarnesG[2 + n] Gamma[2 + n])/ BarnesG[3 + n])^(-1 + n))/BarnesG[2 + n]^2; Table[a[n], {n, 0, 10}] (* Peter Luschny, May 20 2019 *)
-
{a(n) = prod(k=0,n-1, (n+k)!/(k+1)!)}; \\ G. C. Greubel, May 21 2019
-
[product(factorial(n+k)/factorial(k+1) for k in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 21 2019
A324427
a(n) = Product_{k=1..n} (Product_{j=1..k} (Product_{i=1..j} (i+j+k))).
Original entry on oeis.org
1, 3, 360, 38102400, 109506663383040000, 337878174593229551661219840000000, 54048023654871725380569225530796717972337459200000000000, 25571582464158460440549345359703385621119611033206432205259362823202406400000000000000000
Offset: 0
-
a:= n-> mul(mul(mul(i+j+k, i=1..j), j=1..k), k=1..n):
seq(a(n), n=0..8); # Alois P. Heinz, Jun 24 2023
-
Table[Product[Product[Product[i+j+k, {i, 1, j}], {j, 1, k}], {k, 1, n}], {n, 0, 10}]
Table[Sqrt[Product[2^k Gamma[1 + 3*k/2]/Gamma[1 + k/2] (BarnesG[2 + k] BarnesG[2 + 3 k] )/BarnesG[2 + 2 k]^2 , {k, 1, n}]], {n, 0, 10}]
-
a(n) = prod(k=1, n, prod(j=1, k, prod(i=1, j, i+j+k))); \\ Michel Marcus, Feb 27 2019
Showing 1-10 of 11 results.
Comments