cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]

A373670 Numbers k such that the k-th run-length A110969(k) of the sequence of non-prime-powers (A024619) is different from all prior run-lengths.

Original entry on oeis.org

1, 5, 7, 12, 18, 28, 40, 53, 71, 109, 170, 190, 198, 207, 236, 303, 394, 457, 606, 774, 1069, 1100, 1225, 1881, 1930, 1952, 2247, 2281, 3140, 3368, 3451, 3493, 3713, 3862, 4595, 4685, 6625, 8063, 8121, 8783, 12359, 12650, 14471, 14979, 15901, 17129, 19155
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

The unsorted version is A373669.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
So the a(n)-th runs begin:
   1
  14  15
  20  21  22
  33  34  35  36
  54  55  56  57  58
		

Crossrefs

For nonsquarefree runs we have A373199 (if increasing), firsts of A053797.
For squarefree antiruns see A373200, unsorted A373128, firsts of A373127.
For composite runs we have A373400, unsorted A073051, firsts of A176246.
For prime antiruns we have A373402.
For runs of non-prime-powers:
- length A110969, firsts A373669, sorted A373670 (this sequence):
- min A373676
- max A373677
- sum A373678
For runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
A000961 lists the powers of primes (including 1).
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A057820 First differences of sequence of consecutive prime powers (A000961).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002
Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012
Does this sequence contain all positive integers? - Gus Wiseman, Oct 09 2024

Examples

			Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
		

Crossrefs

For perfect-powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
Positions of ones are A375734.
Run-compression is A376308.
Run-lengths are A376309.
Sorted positions of first appearances are A376340.
The second (instead of first) differences are A376596, zeros A376597.
Prime-powers:
- terms: A000961 or A246655, complement A024619
- differences: A057820 (this), first appearances A376341
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708 (ones A375713)
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Haskell
    a057820_list = zipWith (-) (tail a000961_list) a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    A057820 := proc(n)
            A000961(n+1)-A000961(n) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)
    Join[{1},Differences[Select[Range[500],PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1)
    n_prev=1;for(n=2,500,if(isA000961(n),print(n-n_prev);n_prev=n)) \\ Michael B. Porter, Oct 30 2009
    
  • Python
    from sympy import primepi, integer_nthroot
    def A057820(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r, k = m, f(m)+1
        while r != k: r, k = k, f(k)+1
        return r-m # Chai Wah Wu, Sep 12 2024

Formula

a(n) = A000961(n+1) - A000961(n).

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012

A375708 First differences of non-prime-powers (exclusive, so 1 is not a prime-power).

Original entry on oeis.org

5, 4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2024

Keywords

Comments

Non-prime-powers (exclusive) are listed by A361102.
Warning: For this sequence, 1 is not a prime-power but is a non-prime-power.

Examples

			The 6th non-prime-power (exclusive) is 15, and the 7th is 18, so a(6) = 3.
		

Crossrefs

For prime-powers (A000961, A246655) we have A057820, gaps A093555.
For perfect powers (A001597) we have A053289.
For nonprime numbers (A002808) we have A073783.
For squarefree numbers (A005117) we have A076259.
First differences of A361102, inclusive A024619.
Positions of 1's are A375713.
If 1 is considered a prime power we have A375735.
Runs of non-prime-powers:
- length: A110969
- first: A373676
- last: A373677
- sum: A373678
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.
A013929 lists the nonsquarefree numbers, differences A078147.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.

Programs

  • Mathematica
    Differences[Select[Range[100],!PrimePowerQ[#]&]]
  • Python
    from itertools import count
    from sympy import primepi, integer_nthroot, primefactors
    def A375708(n):
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if len(primefactors(i))>1)-m # Chai Wah Wu, Sep 09 2024

A375735 First differences of non-prime-powers (inclusive).

Original entry on oeis.org

4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2024

Keywords

Comments

Inclusive means 1 is a prime-power but not a non-prime-power.
Non-prime-powers (inclusive) are listed by A024619.

Examples

			The 5th non-prime-power (inclusive) is 15, and the 6th is 18, so a(5) = 3.
		

Crossrefs

For perfect powers (A001597) we have the latter terms of A053289.
For nonprime numbers (A002808) we have the latter terms of A073783.
For squarefree numbers (A005117) we have the latter terms of A076259.
First differences of A024619.
For prime-powers (A246655) we have the latter terms of A057820.
Essentially the same as the exclusive version, A375708.
Positions of 1's are A375713(n) - 1.
For runs of non-prime-powers:
- length: A110969
- first: A373676
- last: A373677
- sum: A373678
A000040 lists all of the primes, first differences A001223.
A000961 lists prime-powers (inclusive).
A007916 lists non-perfect-powers, first differences A375706.
A013929 lists the nonsquarefree numbers, first differences A078147.
A246655 lists prime-powers (exclusive).
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power anti-runs: A373576, min A120430, max A006549, length A373671.
Non-prime-power anti-runs: A373679, min A373575, max A255346, len A373672.

Programs

  • Mathematica
    Differences[Select[Range[2,100],!PrimePowerQ[#]&]]
  • Python
    from itertools import count
    from sympy import primepi, integer_nthroot, primefactors
    def A375735(n):
        def f(x): return int(n+1+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return next(i for i in count(m+1) if len(primefactors(i))>1)-m # Chai Wah Wu, Sep 10 2024

A065310 Number of occurrences of n-th prime in A065308, where A065308(j) = prime(j - pi(j)).

Original entry on oeis.org

3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Comments

Seems identical to A054546. Each odd prime arises once or twice!?
First differences of A018252 (positive nonprime numbers). Including 0 gives A054546. Removing 1 gives A073783. - Gus Wiseman, Sep 15 2024

Crossrefs

For twin 2's see A169643.
Positions of 1's are A375926, complement A014689 (except first term).
Other families of numbers and their first-differences:
For prime numbers (A000040) we have A001223.
For composite numbers (A002808) we have A073783.
For nonprime numbers (A018252) we have A065310 (this).
For perfect powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
For squarefree numbers (A005117) we have A076259.
For nonsquarefree numbers (A013929) we have A078147.
For prime-powers inclusive (A000961) we have A057820.
For prime-powers exclusive (A246655) we have A057820(>1).
For non-prime-powers inclusive (A024619) we have A375735.
For non-prime-powers exclusive (A361102) we have A375708.

Programs

  • Mathematica
    t=Table[Prime[w-PrimePi[w]], {w, a, b}] Table[Count[t, Prime[n]], {n, c, d}]
    Differences[Select[Range[100],!PrimeQ[#]&]] (* Gus Wiseman, Sep 15 2024 *)
  • PARI
    { p=1; f=2; m=1; for (n=1, 1000, a=0; p=nextprime(p + 1); while (p==f, a++; m++; f=prime(m - primepi(m))); write("b065310.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 16 2009

A373671 Length of the n-th maximal antirun of prime-powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 7, 26, 27, 1007, 5558, 5734, 31209
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A000961 without 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of prime-powers begin:
   2
   3
   4
   5   7
   8
   9  11  13  16
  17  19  23  25  27  29  31
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671 (this sequence)
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
A000961 lists the powers of primes (including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers (not including 1 A024619).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A025528(A006549(n)).

A373672 Length of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

5, 3, 1, 6, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A361102 or A024619 with 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672 (this sequence), firsts (3,7,2,25,1,4)
- min A373575
- max A255346
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A356068(A255346(n)).

A373576 Sums of maximal antiruns of prime-powers.

Original entry on oeis.org

2, 3, 4, 12, 8, 49, 171, 2032, 5157, 3997521, 199713082, 561678378, 10122001905, 109934112352390774
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2024

Keywords

Comments

An antirun of a sequence (in this case A246655) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of powers of primes begin:
   2
   3
   4
   5   7
   8
   9  11  13  16
  17  19  23  25  27  29  31
		

Crossrefs

See link for composite, prime, nonsquarefree, and squarefree runs/antiruns.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576 (this sequence), min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.
A000040 lists the primes, differences A001223.
A000961 lists all powers of primes. A246655 lists just prime-powers.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Total/@Split[Select[Range[1000],PrimePowerQ],#1+1!=#2&]//Most

Extensions

a(14) from Giorgos Kalogeropoulos, Jun 18 2024

A373675 Sums of maximal runs of powers of primes A000961.

Original entry on oeis.org

15, 24, 11, 13, 33, 19, 23, 25, 27, 29, 63, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 255, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

A000040 lists the primes, differences A001223.
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
See link for composite, prime, nonsquarefree, and squarefree runs.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679, min A373575, max A255346, length A373672.

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Total/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most
Showing 1-10 of 40 results. Next