cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000607 Number of partitions of n into prime parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40, 46, 52, 60, 67, 77, 87, 98, 111, 124, 140, 157, 175, 197, 219, 244, 272, 302, 336, 372, 413, 456, 504, 557, 614, 677, 744, 819, 899, 987, 1083, 1186, 1298, 1420, 1552, 1695, 1850, 2018, 2198, 2394, 2605, 2833, 3079, 3344
Offset: 0

Views

Author

Keywords

Comments

a(n) gives the number of values of k such that A001414(k) = n. - Howard A. Landman, Sep 25 2001
Let W(n) = {prime p: There is at least one number m whose spf is p, and sopfr(m) = n}. Let V(n,p) = {m: sopfr(m) = n, p belongs to W(n)}. Then a(n) = sigma(|V(n,p)|). E.g.: W(10) = {2,3,5}, V(10,2) = {30,32,36}, V(10,3) = {21}, V(10,5) = {25}, so a(10) = 3+1+1 = 5. - David James Sycamore, Apr 14 2018
From Gus Wiseman, Jan 18 2020: (Start)
Also the number of integer partitions such that the sum of primes indexed by the parts is n. For example, the sum of primes indexed by the parts of the partition (3,2,1,1) is prime(3)+prime(2)+prime(1)+prime(1) = 12, so (3,2,1,1) is counted under a(12). The a(2) = 1 through a(14) = 10 partitions are:
1 2 11 3 22 4 32 41 33 5 43 6 44
21 111 31 221 222 42 322 331 51 52
211 1111 311 321 411 421 332 431
2111 2211 2221 2222 422 3222
11111 3111 3211 3221 3311
21111 22111 4111 4211
111111 22211 22221
31111 32111
211111 221111
1111111
(End)

Examples

			n = 10 has a(10) = 5 partitions into prime parts: 10 = 2 + 2 + 2 + 2 + 2 = 2 + 2 + 3 + 3 = 2 + 3 + 5 = 3 + 7 = 5 + 5.
n = 15 has a(15) = 12 partitions into prime parts: 15 = 2 + 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 3 + 3 + 3 = 2 + 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 5 = 2 + 3 + 5 + 5 = 2 + 3 + 3 + 7 = 2 + 2 + 11 = 2 + 13 = 3 + 3 + 3 + 3 + 3 = 3 + 5 + 7 = 5 + 5 + 5.
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 203.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
  • D. M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

G.f. = 1 / g.f. for A046675. See A046113 for the ordered (compositions) version.
Row sums of array A116865 and of triangle A261013.
Column sums of A331416.
Partitions whose Heinz number is divisible by their sum of primes are A330953.
Partitions of whose sum of primes is divisible by their sum are A331379.

Programs

  • Haskell
    a000607 = p a000040_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 05 2012
    
  • Magma
    [1] cat [#RestrictedPartitions(n,{p:p in PrimesUpTo(n)}): n in [1..100]]; // Marius A. Burtea, Jan 02 2019
  • Maple
    with(gfun):
    t1:=mul(1/(1-q^ithprime(n)),n=1..51):
    t2:=series(t1,q,50):
    t3:=seriestolist(t2); # fixed by Vaclav Kotesovec, Sep 14 2014
  • Mathematica
    CoefficientList[ Series[1/Product[1 - x^Prime[i], {i, 1, 50}], {x, 0, 50}], x]
    f[n_] := Length@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]; Array[f, 57] (* Robert G. Wilson v, Jul 23 2010 *)
    Table[Length[Select[IntegerPartitions[n],And@@PrimeQ/@#&]],{n,0,60}] (* Harvey P. Dale, Apr 22 2012 *)
    a[n_] := a[n] = If[PrimeQ[n], 1, 0]; c[n_] := c[n] = Plus @@ Map[# a[#] &, Divisors[n]]; b[n_] := b[n] = (c[n] + Sum[c[k] b[n - k], {k, 1, n - 1}])/n; Table[b[n], {n, 1, 20}] (* Thomas Vogler, Dec 10 2015: Uses Euler transform, caches computed values, faster than IntegerPartitions[] function. *)
    nmax = 100; pmax = PrimePi[nmax]; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; poly[[3]] = -1; Do[p = Prime[k]; Do[poly[[j + 1]] -= poly[[j + 1 - p]], {j, nmax, p, -1}];, {k, 2, pmax}]; s = Sum[poly[[k + 1]]*x^k, {k, 0, Length[poly] - 1}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 11 2021 *)
  • PARI
    N=66;x='x+O('x^N); Vec(1/prod(k=1,N,1-x^prime(k))) \\ Joerg Arndt, Sep 04 2014
    
  • Python
    from sympy import primefactors
    l = [1, 0]
    for n in range(2, 101):
        l.append(sum(sum(primefactors(k)) * l[n - k] for k in range(1, n + 1)) // n)
    l  # Indranil Ghosh, Jul 13 2017
    
  • Sage
    [Partitions(n, parts_in=prime_range(n + 1)).cardinality() for n in range(100)]  # Giuseppe Coppoletta, Jul 11 2016
    

Formula

Asymptotically a(n) ~ exp(2 Pi sqrt(n/log n) / sqrt(3)) (Ayoub).
a(n) = (1/n)*Sum_{k=1..n} A008472(k)*a(n-k). - Vladeta Jovovic, Aug 27 2002
G.f.: 1/Product_{k>=1} (1-x^prime(k)).
See the partition arrays A116864 and A116865.
From Vaclav Kotesovec, Sep 15 2014 [Corrected by Andrey Zabolotskiy, May 26 2017]: (Start)
It is surprising that the ratio of the formula for log(a(n)) to the approximation 2 * Pi * sqrt(n/(3*log(n))) exceeds 1. For n=20000 the ratio is 1.00953, and for n=50000 (using the value from Havermann's tables) the ratio is 1.02458, so the ratio is increasing. See graph above.
A more refined asymptotic formula is found by Vaughan in Ramanujan J. 15 (2008), pp. 109-121, and corrected by Bartel et al. (2017): log(a(n)) = 2*Pi*sqrt(n/(3*log(n))) * (1 - log(log(n))/(2*log(n)) + O(1/log(n))).
See Bartel, Bhaduri, Brack, Murthy (2017) for a more complete asymptotic expansion. (End)
G.f.: 1 + Sum_{i>=1} x^prime(i) / Product_{j=1..i} (1 - x^prime(j)). - Ilya Gutkovskiy, May 07 2017
a(n) = A184198(n) + A184199(n). - Vaclav Kotesovec, Jan 11 2021

A109611 Chen primes: primes p such that p + 2 is either a prime or a semiprime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409
Offset: 1

Views

Author

Paul Muljadi, Jul 31 2005

Keywords

Comments

43 is the first prime which is not a member (see A102540).
Contains A001359 = lesser of twin primes.
A063637 is a subsequence. - Reinhard Zumkeller, Mar 22 2010
In 1966 Chen proved that this sequence is infinite; his proof did not appear until 1973 due to the Cultural Revolution. - Charles R Greathouse IV, Jul 12 2016
Primes p such that p + 2 is a term of A037143. - Flávio V. Fernandes, May 08 2021
Named after the Chinese mathematician Chen Jingrun (1933-1996). - Amiram Eldar, Jun 10 2021

Examples

			a(4) = 7 because 7 + 2 = 9 and 9 is a semiprime.
a(5) = 11 because 11 + 2 = 13, a prime.
		

Crossrefs

Programs

  • Maple
    A109611 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            a := nextprime(procname(n-1)) ;
            while true do
                if isprime(a+2) or numtheory[bigomega](a+2) = 2 then
                    return a;
                end if;
                a := nextprime(a) ;
            end do:
        end if;
    end proc: # R. J. Mathar, Apr 26 2013
  • Mathematica
    semiPrimeQ[x_] := TrueQ[Plus @@ Last /@ FactorInteger[ x ] == 2]; Select[Prime[Range[100]], PrimeQ[ # + 2] || semiPrimeQ[ # + 2] &] (* Alonso del Arte, Aug 08 2005 *)
    SequencePosition[PrimeOmega[Range[500]], {1, , 1|2}][[All, 1]] (* _Jean-François Alcover, Feb 10 2018 *)
  • PARI
    isA001358(n)= if( bigomega(n)==2, return(1), return(0) );
    isA109611(n)={ if( ! isprime(n), return(0), if( isprime(n+2), return(1), return( isA001358(n+2)) ); ); }
    { n=1; for(i=1,90000, p=prime(i); if( isA109611(p), print(n," ",p); n++; ); ); } \\ R. J. Mathar, Aug 20 2006
    
  • PARI
    list(lim)=my(v=List([2]),semi=List(),L=lim+2,p=3); forprime(q=3,L\3, forprime(r=3,min(L\q,q), listput(semi,q*r))); semi=Set(semi); forprime(q=7,lim, if(setsearch(semi,q+2), listput(v,q))); forprime(q=5,L, if(q-p==2, listput(v,p)); p=q); Set(v) \\ Charles R Greathouse IV, Aug 25 2017
    
  • Python
    from sympy import isprime, primeomega
    def ok(n): return isprime(n) and (primeomega(n+2) < 3)
    print(list(filter(ok, range(1, 410)))) # Michael S. Branicky, May 08 2021

Formula

a(n)+2 = A139690(n).
Sum_{n>=1} 1/a(n) converges (Zhou, 2009). - Amiram Eldar, Jun 10 2021

Extensions

Corrected by Alonso del Arte, Aug 08 2005

A101048 Number of partitions of n into semiprimes (a(0) = 1 by convention).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 2, 3, 1, 5, 3, 5, 4, 7, 4, 9, 7, 10, 8, 13, 10, 17, 13, 18, 17, 25, 21, 29, 25, 34, 34, 43, 37, 51, 49, 61, 59, 73, 69, 89, 87, 103, 103, 124, 122, 148, 149, 172, 176, 206, 208, 244, 248, 281, 293, 337, 344, 391, 405, 456, 479, 537, 553
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 28 2004

Keywords

Comments

Semiprime analog of A000607. a(n) <= A002095(n). - Jonathan Vos Post, Oct 01 2007
Das, Robles, Zaharescu, & Zeindler give an asymptotic formula, see Links. - Charles R Greathouse IV, Jan 20 2023

Examples

			a(12) = #{6 + 6, 4 + 4 + 4} = #{2 * (2*3), 3 * (2*2)} = 2.
		

Crossrefs

Programs

  • Haskell
    a101048 = p a001358_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Mar 21 2014
    
  • Maple
    g:=1/product(product(1-x^(ithprime(i)*ithprime(j)),i=1..j),j=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..71); # Emeric Deutsch, Apr 04 2006
    # second Maple program:
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(numtheory[bigomega](n)=2, n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
         `if`(i>n, 0, b(n-i, h(min(n-i, i))))+b(n, h(i-1))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 19 2021
  • Mathematica
    terms = 100; CoefficientList[1/Product[1 - x^(Prime[i] Prime[j]), {i, 1, PrimePi[Ceiling[terms/2]]}, {j, 1, i}] + O[x]^terms, x] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    issemi(n)=if(n<4, return(0)); forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
    allsemi(v)=for(i=1,#v, if(!issemi(v[i]), return(0))); 1
    a(n)=my(s); if(n<4, return(n==0)); forpart(k=n, if(allsemi(k), s++),[4,n]); s \\ Charles R Greathouse IV, Jan 20 2023

Formula

G.f.: 1/product(product(1-x^(p(i)p(j)), i = 1..j),j = 1..infinity), p(k) is the k-th prime. - Emeric Deutsch, Apr 04 2006

Extensions

a(0) set to 1 by N. J. A. Sloane, Nov 23 2007

A112022 Number of partitions of n into distinct Chen primes.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 5, 5, 6, 5, 6, 7, 6, 9, 7, 9, 9, 9, 11, 11, 11, 13, 12, 14, 15, 14, 17, 15, 17, 19, 18, 21, 21, 21, 24, 24, 26, 28, 27, 30, 30, 32, 35, 34, 37, 37, 39, 41, 43, 45, 46, 48, 51, 53, 56, 58, 59, 61, 64, 66, 70, 71, 73
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 26 2005

Keywords

Comments

a(n) = A000586(n) for n <= 42.

Crossrefs

Programs

  • Mathematica
    terms = 81;
    gf = Times @@ (1 + x^SequencePosition[ PrimeOmega[ Range[terms]], {1, _, 1|2}][[All, 1]]) + O[x]^terms;
    CoefficientList[gf, x] (* Jean-François Alcover, Jul 02 2018 *)
  • PARI
    P=1+O(x^1001); forprime(p=2,1e3,if(bigomega(p+2)<3,P*=1+x^p)); Vec(P) \\ Charles R Greathouse IV, May 13 2013

Formula

G.f.: Product_{k>=1} (1 + x^A109611(k)). - Andrew Howroyd, Dec 28 2017
Showing 1-4 of 4 results.