A114938 Number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal.
1, 0, 2, 30, 864, 39480, 2631600, 241133760, 29083420800, 4467125013120, 851371260364800, 197158144895712000, 54528028997584665600, 17752366094818747392000, 6720318485119046923315200, 2927066537906697348594432000, 1453437879238150456164433920000
Offset: 0
Keywords
Examples
a(2) = 2 because there are two permutations of {1,1,2,2} avoiding equal consecutive terms: 1212 and 2121.
References
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997. Chapter 2, Sieve Methods, Example 2.2.3, page 68.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..238 (terms 1..100 from Andrew Woods)
- H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
Crossrefs
Cf. A114939 = preferred seating arrangements of n couples.
Cf. A007060 = arrangements of n couples with no adjacent spouses; A007060(n) = 2^n * A114938(n) (this sequence).
Cf. A278990 = number of loopless linear chord diagrams with n chords.
Cf. A000806 = Bessel polynomial y_n(-1).
The version for multisets with prescribed multiplicities is A335125.
The version for prime indices is A335452.
Anti-run compositions are counted by A003242.
Anti-run compositions are ranked by A333489.
Inseparable partitions are counted by A325535.
Inseparable partitions are ranked by A335448.
Separable partitions are counted by A325534.
Separable partitions are ranked by A335433.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.
Row n=2 of A322093.
Programs
-
Magma
[1] cat [n le 2 select 2*(n-1) else n*(2*n-1)*Self(n-1) + (n-1)*n*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 10 2015
-
Mathematica
Table[Sum[Binomial[n,i](2n-i)!/2^(n-i) (-1)^i,{i,0,n}],{n,0,20}] (* Geoffrey Critzer, Jan 02 2013, and adapted to the extension by Stefano Spezia, Nov 15 2018 *) Table[Length[Select[Permutations[Join[Range[n],Range[n]]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,5}] (* Gus Wiseman, Jul 04 2020 *)
-
PARI
A114938(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!/2^k); vector(20, n, A114938(n-1)) \\ Michel Marcus, Aug 10 2015
-
SageMath
def A114938(n): return (-1)^n*sum(binomial(n,k)*factorial(n+k)//(-2)^k for k in range(n+1)) [A114938(n) for n in range(31)] # G. C. Greubel, Sep 26 2023
Formula
a(n) = Sum_{k=0..n} ((binomial(n, k)*(-1)^(n-k)*(n+k)!)/2^k).
a(n) = (-1)^n * n! * A000806(n), n>0. - Vladeta Jovovic, Nov 19 2009
a(n) = n*(2*n-1)*a(n-1) + (n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 2^(n+1)*n^(2*n)*sqrt(Pi*n)/exp(2*n+1). - Vaclav Kotesovec, Aug 07 2013
a(n) = n! * A278990(n). - Alexander Burstein, May 16 2020
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*sqrt(2/Pi) * n! * BesselK(n+1/2, -1).
E.g.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * erfi((1+x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(sqrt(1-2*x))/sqrt(1-2*x).
Sum_{n >= 0} a(n)*x^n/(n!*(n+1)!) = ( 1 - exp(-1 + sqrt(1-2*x)) )/x. (End)
Extensions
a(0)=1 prepended by Seiichi Manyama, Nov 15 2018
Comments