cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048715 Binary expansion matches (100(0)*)*(0|1|10)?; or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-3).

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 16, 17, 18, 32, 33, 34, 36, 64, 65, 66, 68, 72, 73, 128, 129, 130, 132, 136, 137, 144, 145, 146, 256, 257, 258, 260, 264, 265, 272, 273, 274, 288, 289, 290, 292, 512, 513, 514, 516, 520, 521, 528, 529, 530, 544, 545, 546, 548, 576, 577, 578, 580
Offset: 0

Views

Author

Antti Karttunen, Mar 30 1999

Keywords

Comments

No more than one 1-bit in each bit triple.
All terms satisfy A048727(n) = 7*n.
Constructed from A000930 in the same way as A003714 is constructed from A000045.
It appears that n is in the sequence if and only if C(7n,n) is odd (cf. A003714). - Benoit Cloitre, Mar 09 2003
The conjecture by Benoit is correct. This is easily proved using the well-known result that the multiplicity with which a prime p divides C(n+m,n) is the number of carries when adding n+m in base p. - Franklin T. Adams-Watters, Oct 06 2009
Appears to be the set of numbers x such that (x AND 5*x) = x and (x OR 3*x)/x = 3. - Gary Detlefs, Jun 08 2024

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[OddQ[Binomial[7n, n]], Sow[n]], {n, 0, 400}]][[2, 1]]
    (* Second program: *)
    filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MatchQ[bb, {_, 1, 0, 1, _}|{_, 1, 1, _}]];
    Select[Range[0, 580], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
  • PARI
    is(n)=!bitand(n, 6*n) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Perl
    for my $k (0..580) { print "$k, " if sprintf("%b", $k) =~ m{^(100(0)*)*(0|1|10)?$}; } # Georg Fischer, Jun 26 2021
    
  • Python
    import re
    def ok(n): return re.fullmatch('(100(0)*)*(0|1|10)?', bin(n)[2:]) != None
    print(list(filter(ok, range(581)))) # Michael S. Branicky, Jun 26 2021

Formula

a(0) = 0, a(n) = (2^(invfoo(n)-1))+a(n-foo(invfoo(n))), where foo(n) is foo(n-1) + foo(n-3) (A000930) and invfoo is its "integral" (floored down) inverse.
a(n) XOR 6*a(n) = 7*a(n); 3*a(n) XOR 4*a(n) = 7*a(n); 3*a(n) XOR 5*a(n) = 6*a(n); (conjectures). - Paul D. Hanna, Jan 22 2006
The conjectures can be verified using the Walnut theorem-prover (see links). - Sebastian Karlsson, Dec 31 2022

Extensions

Definition corrected by Georg Fischer, Jun 26 2021

A048718 Binary expansion matches ((0)*0001)*(0*); or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-4).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 17, 32, 33, 34, 64, 65, 66, 68, 128, 129, 130, 132, 136, 256, 257, 258, 260, 264, 272, 273, 512, 513, 514, 516, 520, 528, 529, 544, 545, 546, 1024, 1025, 1026, 1028, 1032, 1040, 1041, 1056, 1057
Offset: 0

Views

Author

Antti Karttunen, Mar 30 1999

Keywords

Comments

Max. 1 one-bit occur in each range of four bits.
Constructed from A003269 in the same way as A003714 is constructed from A000045.

Crossrefs

Programs

  • Mathematica
    filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MemberQ[{{1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}, bb] && SequencePosition[bb, {a_, b_, c_, d_} /; Count[{a, b, c, d}, 1] > 1] == {}];
    Select[Range[0, 1057], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
  • PARI
    is(n)=!bitand(n, 14*n) \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(0) = 0, a(n) = (2^(invfyy(n)-1))+a(n-fyy(invfyy(n))) where fyy(n) is fyy(n-1) + fyy(n-4) (A003269) and invfyy is its "integral" (floored down) inverse.
a(n) XOR 14*a(n) = 15*a(n); 3*a(n) XOR 9*a(n) = 10*a(n); 3*a(n) XOR 13*a(n) = 14*a(n); 5*a(n) XOR 9*a(n) = 12*a(n); 5*a(n) XOR 11*a(n) = 14*a(n); 6*a(n) XOR 11*a(n) = 13*a(n); 7*a(n) XOR 9*a(n) = 14*a(n); 7*a(n) XOR 10*a(n) = 13*a(n); 7*a(n) XOR 11*a(n) = 12*a(n); 12*a(n) XOR 21*a(n) = 25*a(n); 12*a(n) XOR 37*a(n) = 41*a(n); etc. (conjectures). - Paul D. Hanna, Jan 22 2006
The conjectures can be verified using the Walnut theorem-prover (see links). - Sebastian Karlsson, Dec 31 2022

A115424 Integers n > 0 such that n XOR 62*n = 63*n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 65, 128, 129, 130, 256, 257, 258, 260, 512, 513, 514, 516, 520, 1024, 1025, 1026, 1028, 1032, 1040, 2048, 2049, 2050, 2052, 2056, 2064, 2080, 4096, 4097, 4098, 4100, 4104, 4112, 4128, 4160, 4161, 8192, 8193, 8194, 8196, 8200, 8208
Offset: 1

Views

Author

Paul D. Hanna, Jan 22 2006

Keywords

Crossrefs

Cf. A003714 (Fibbinary numbers), A048715, A048718, A115422, A115423.

Programs

Formula

This sequence also seems to satisfy:
3*a(n) XOR 41*a(n) = 42*a(n);
5*a(n) XOR 35*a(n) = 38*a(n);
6*a(n) XOR 35*a(n) = 37*a(n);
7*a(n) XOR 35*a(n) = 36*a(n); etc.

A115422 Integers n > 0 such that n XOR 20*n = 21*n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 33, 36, 48, 64, 65, 66, 67, 72, 73, 96, 97, 128, 129, 130, 131, 132, 134, 144, 146, 192, 193, 194, 195, 256, 257, 258, 259, 260, 262, 264, 265, 268, 288, 289, 292, 384, 385, 386, 387, 388, 390, 512, 513, 514, 515, 516, 518
Offset: 1

Views

Author

Paul D. Hanna, Jan 22 2006

Keywords

Comments

n is in the sequence iff 2*n is in the sequence. - Robert Israel, Nov 11 2016

Crossrefs

Cf. A003714 (Fibbinary numbers), A048715, A048718, A115423, A115424.

Programs

Formula

This sequence also seems to satisfy:
5*a(n) XOR 16*a(n) = 21*a(n);
5*a(n) XOR 17*a(n) = 20*a(n); etc.
a(A224809(n+4)) = 2^n. - Gheorghe Coserea, Nov 11 2016
Showing 1-4 of 4 results.