cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A000422 Concatenation of numbers from n down to 1.

Original entry on oeis.org

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321, 1110987654321, 121110987654321, 13121110987654321, 1413121110987654321, 151413121110987654321, 16151413121110987654321, 1716151413121110987654321, 181716151413121110987654321
Offset: 1

Views

Author

R. Muller

Keywords

Comments

The first prime term in this sequence is a(82) (see A176024). - Artur Jasinski, Mar 30 2008
For n < 10^4, a(n)/A000217(n) is an integer for n = 1, 2, and 18. The integers are 1, 7 (prime), and 1062667552123515268933651, respectively. - Derek Orr, Sep 04 2014

References

  • F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ

Crossrefs

Programs

  • Maple
    a[1]:= 1:
    for n from 2 to 100 do
    a[n]:= n*10^(1+ilog10(a[n-1])) + a[n-1]
    od:
    seq(a[n],n=1..100); # Robert Israel, Sep 05 2014
    # second Maple program:
    a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(n, a(n-1)))) end:
    seq(a(n), n=1..22);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
    Table[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]],{n,20}] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    a(n)=my(t=n);forstep(k=n-1,1,-1,t=t*10^#Str(k)+k);t \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    A000422(n,p=1,L=1)=sum(k=1,n,k*p*=L+(k==L&&!L*=10)) \\ M. F. Hasler, Nov 02 2016
    
  • Python
    def a(n): return int("".join(map(str, range(n, 0, -1))))
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Dec 08 2021

Formula

a(n+1) = (n+1)*10^len(a(n)) + a(n), where len(k) = number of digits in k.
a(n) = Sum_{k=1..n} k*10^(A058183(k) - (1+floor(log10(k)))). - Alexander Goebel, Mar 07 2020
From Serge Batalov, Dec 08 2021: (Start)
a(n) = ((n*9-1)*10^n+1)/9^2 for n < 10,
a(n) = ((n*99-1)*10^(2*n-19)-89)/99^2*10^10 + (8*10^10+1)/9^2 for 10 <= n < 100,
a(n) = ((n*999-1)*10^(3*n-299)-989)/999^2*10^191 + c2 for 10^2 <= n < 10^3,
a(n) = ((n*9999-1)*10^(4*n-3999)-9989)/9999^2*10^2892 + c3 for 10^3 <= n < 10^4,
a(n) = ((n*99999-1)*10^(5*n-49999)-99989)/99999^2*10^38893 + c4 for 10^4 <= n < 10^5,
a(n) = ((n*999999-1)*10^(6*n-599999)-999989)/999999^2*10^488894 + c5 for 10^5 <= n < 10^6,
where
c2 = (98*10^191 + 879*10^10 + 121)/99^2 = a(99),
c3 = (998*10^2701 - 989)/999^2*10^191 + c2 = a(999),
c4 = (9998*10^36001 - 9989)/9999^2*10^2892 + c3 = a(9999),
c5 = (99998*10^450001 - 99989)/99999^2*10^38893 + c4 = a(99999).
(End)

Extensions

Edited by N. J. A. Sloane, Dec 03 2021

A116504 Number of distinct prime divisors of the concatenation of n,...,1.

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 4, 5, 4, 6, 8, 4, 5, 4, 5, 4, 5, 6, 7, 5, 5, 7, 8, 3, 6, 5, 7, 8, 6, 4, 3, 6, 5, 8, 6, 3, 7, 6, 5, 7, 7, 3, 6, 3, 7, 9, 9, 3, 4, 4, 6, 3, 3, 5, 8, 5, 6, 7, 7, 4, 8, 8, 4, 8, 4, 7, 8, 10, 3, 7, 6, 4, 7, 7, 1, 3, 8, 3, 8, 5, 4, 5, 7, 11, 9, 6
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 20 2006

Keywords

Examples

			87654321 = 3*3*1997*4877, distinct prime divisors are 3, 1997 and 4877, hence a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; m = FactorInteger[p]; AppendTo[b, Length[m]], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
    Table[PrimeNu[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]]],{n,95}] (* Harvey P. Dale, Oct 03 2015 *)
  • PARI
    {a="";for(n=1,58,a=concat(n,a);print1(omega(eval(a)),","))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 29 2006
Terms a(59)-a(93) from Sean A. Irvine, Nov 04 2009
a(90) corrected by Sean A. Irvine, Nov 02 2024

A075019 a(1) = 1; for n > 1, a(n) = the smallest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 127, 2, 3, 2, 3, 2, 113, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 29, 2, 3, 2, 3, 2, 71, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 23, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 10386763, 2, 3, 2, 3, 2, 397, 2, 3, 2, 3, 2, 37907, 2, 3, 2, 3, 2, 73, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 37, 2, 3, 2
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Comments

Least prime factor of A007908(n). For 1 < n <= 5000, a(n) < A007908(n), but this should fail infinitely often (assuming standard heuristics). - Charles R Greathouse IV, Apr 10 2014
From Robert Israel, Aug 28 2015: (Start)
a(n) = 2 iff n is even.
a(n) = 3 iff n == 3 or 5 (mod 6).
a(n) = 5 iff n == 25 (mod 30). (End)

Examples

			a(5)= 3, 3 is the smallest prime divisor of 12345.
		

Crossrefs

Programs

  • Maple
    C:= 1: A[1]:= 1:
    for n from 2 to 100 do
    C:= C*10^(1+ilog10(n))+n;
    F:= map(t -> t[1],ifactors(C,'easy')[2]);
    if hastype(F,integer) then A[n]:= min(select(type,F,integer))
    else A[n]:= min(numtheory:-factorset(C))
    fi
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 28 2015
  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, Length[w]}]; p = FromDigits[a]; AppendTo[b,First[First[FactorInteger[ p]]]], {n, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
  • PARI
    lpf(n)=forprime(p=2,1e3,if(n%p==0,return(p))); factor(n)[1,1]
    print1(N=1);for(n=2,100,N=N*10^#Str(n)+n; print1(", "lpf(N))) \\ Charles R Greathouse IV, Apr 10 2014

Extensions

More terms from Sascha Kurz, Jan 03 2003

A138789 a(n) = number of distinct prime divisors of A104759(n).

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 4, 4, 2, 5, 4, 2, 3, 7, 4, 4, 3, 3, 2, 5, 3, 5, 2, 3, 6, 6, 3, 3, 5, 5, 7, 3, 3, 4, 3, 3, 4, 4, 5, 3, 5, 7, 3, 5, 6, 6, 5, 4, 5, 2, 6, 4, 6, 4, 4, 7, 6, 5, 5, 6, 9, 5, 5, 7, 5, 5, 5, 5, 6, 6, 4, 4, 4, 5, 8, 7, 6, 4, 5, 4, 4, 9
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, 50}]; Table[Length[FactorInteger[FromDigits[Reverse[lst[[Range[1,n]]]]]]], {n, 1, Length[lst]}] (* Robert Price, Mar 24 2015 *)

Formula

a(n) = A001221(A104759(n)). - Michel Marcus, Jun 30 2024

Extensions

Entire sequence corrected by Robert Price, Mar 24 2015
More terms from Sean A. Irvine, Jul 21 2024

A138793 a(n) = concatenation of reversed digits of natural numbers from n down to 1.

Original entry on oeis.org

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 1987654321, 1101987654321, 211101987654321, 31211101987654321, 4131211101987654321, 514131211101987654321, 61514131211101987654321, 7161514131211101987654321
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008, Apr 04 2008

Keywords

Comments

Note that leading zeros are not omitted when writing down digits in reversed order. So 10 reversed becomes 01. - N. J. A. Sloane, Jan 23 2017

Crossrefs

Programs

  • Magma
    [Seqint(&cat[Reverse(Intseq(k)): k in [1..n]]): n in [1..16]]; // Bruno Berselli, May 27 2011
    
  • Maple
    read(transforms): A138793 := proc(n) return digrev(parse(cat($(1..n)))): end: seq(A138793(n),n=1..17); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, p], {n, 1, 61}]; b (* Artur Jasinski, Mar 30 2008 *)
    lst = {}; Table[FromDigits[Reverse[lst = Join[lst, IntegerDigits[n]]]], {n, 1, 15}] (* Robert Price, Mar 22 2015 *)
  • PARI
    a(n) = my(s = ""); forstep (k=n,1,-1, sk = digits(k); forstep (j=#sk, 1, -1, s = concat(s, sk[j]))); eval(s); \\ Michel Marcus, Jan 28 2017

A138790 Numbers k such that A138793(k) is prime.

Original entry on oeis.org

61, 946
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008, Mar 31 2008

Keywords

Comments

There are no more primes for k <= 5000.
a(3) > 20000. - Robert Price, Mar 24 2015

Examples

			a(1) = 61 because the number 160695...654321 is prime.
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; If[PrimeQ[p], Print[n]; AppendTo[b, p]], {n, 1, 2000}]; b (* Artur Jasinski, Mar 30 2008 *)
    Select[Range[1, 1000], PrimeQ[lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, #}]; FromDigits[Reverse[lst]]] &] (* Robert Price, Mar 24 2015 *)

A075022 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 3, 41, 617, 823, 643, 9721, 14593, 3803, 1234567891, 630803, 2110805449, 869211457, 205761315168520219, 8230452606740808761, 1231026625769, 584538396786764503, 801309546900123763, 833929457045867563
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4) = 617 since 1234 = 2*617.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
    Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n]]]][[-1,1]],{n,20}] (* Harvey P. Dale, Aug 31 2015 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A075020 a(1) = 1; for n>1, a(n) = the smallest prime divisor of the number C(n) formed from the reverse concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 3, 3, 29, 3, 3, 19, 3, 3, 7, 3, 3, 17, 3, 3, 23, 3, 3, 17, 3, 3, 13, 3, 3, 11, 3, 3, 23, 3, 3, 7, 3, 3, 89, 3, 3, 29, 3, 3, 11, 3, 3, 52433, 3, 3, 23, 3, 3, 71, 3, 3, 7, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4)= 29, 29 is the smallest prime divisor of 4321 =29*149
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A075021 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of n, n-1, n-2, n-3, ... down to 1.

Original entry on oeis.org

1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 54421, 370329218107, 5767189888301, 237927839, 1728836281, 136133374970881, 1190788477118549, 677181889, 399048049, 40617114482123, 629639170774346584751, 2605975408790409767, 65372140114441
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4)= 149 as 149 is the largest prime divisor of 4321 =29*149
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w];Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}];p = FromDigits[Reverse[a]];AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *)
    Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]]] [[-1,1]],{n,20}] (* Harvey P. Dale, Dec 14 2020 *)
  • PARI
    a(n) = if(n==1, 1, vecmax(factor(eval(concat(apply(k->Str(n-k+1), [1..n]))))[, 1])); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A000422(n)). - Daniel Suteu, May 26 2022

Extensions

More terms from Sascha Kurz, Jan 03 2003
Name edited by Felix Fröhlich, May 26 2022

A138957 Concatenation of the reversed digits of numbers from 1 to n.

Original entry on oeis.org

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678901, 1234567890111, 123456789011121, 12345678901112131, 1234567890111213141, 123456789011121314151, 12345678901112131415161
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008, Apr 05 2008

Keywords

Comments

There are no primes in this sequence for n<=7000

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 21}]; b
    (* or *)
    Table[FromDigits[Flatten[Reverse/@IntegerDigits[Range[n]]]],{n,20}] (* Harvey P. Dale, Oct 22 2013 *)
Showing 1-10 of 17 results. Next