cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A109953 Primes p such that p^2+2 is a semiprime.

Original entry on oeis.org

2, 7, 11, 17, 29, 37, 43, 53, 73, 79, 83, 97, 137, 191, 233, 251, 263, 269, 271, 277, 281, 359, 379, 389, 433, 461, 479, 521, 541, 577, 601, 631, 647, 677, 691, 719, 739, 827, 829, 863, 881, 929, 947, 983, 997, 1033, 1063, 1087, 1109, 1187, 1223
Offset: 1

Views

Author

Zak Seidov, Jul 06 2005

Keywords

Comments

Cf. A048161 Primes p such that p^2+1 is a semiprime.
Primes p such that (p^2+2)/3 is prime. For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 3 divides q^2+2. Hence if q^2+2 is a semiprime then (q^2+2)/3 must be prime. - T. D. Noe, May 05 2006

Examples

			a(2) = 7 is o.k. because 7^2+2=51=3*17 (semiprime), and 17 = A289135(2).
		

Crossrefs

Cf. A118915 (primes p such that (p^2+5)/6 is prime).

Programs

  • Mathematica
    A109953=Select[Prime[Range[200]], Plus@@Last/@FactorInteger[ #^2+2]==2&]
    Select[Prime[Range[200]],PrimeOmega[#^2+2]==2&] (* Harvey P. Dale, Nov 19 2011 *)

Formula

a(n) = sqrt(3*A289135(n) - 2). See the T. D. Noe comment above. - Wolfdieter Lang, Jul 19 2017

A118918 Primes p such that (p^2+11)/12 is prime.

Original entry on oeis.org

5, 7, 11, 19, 29, 61, 71, 79, 89, 109, 151, 179, 181, 191, 199, 271, 281, 349, 379, 389, 421, 439, 479, 521, 541, 569, 631, 659, 691, 809, 821, 829, 839, 919, 971, 1019, 1051, 1061, 1069, 1091, 1289, 1439, 1511, 1621, 1699, 1709, 1789, 1811, 1871, 2069, 2141
Offset: 1

Views

Author

T. D. Noe, May 05 2006

Keywords

Comments

For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 12 divides q^2+11.

Crossrefs

Cf. A109953 (primes p such that (p^2+1)/3 is prime), A118915 (primes p such that (p^2+11)/12 is prime).

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[(#^2+11)/12]&]

A118940 Primes p such that (p^2+7)/8 is prime.

Original entry on oeis.org

3, 7, 17, 23, 41, 47, 71, 89, 103, 113, 127, 137, 151, 191, 193, 199, 223, 263, 271, 281, 337, 359, 401, 439, 457, 503, 521, 569, 577, 599, 641, 719, 727, 751, 839, 857, 863, 881, 887, 929, 991, 1009, 1033, 1097, 1103, 1151, 1193, 1217, 1231, 1279, 1297, 1303
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 8 divides q^2+7.

Crossrefs

Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+7)/8]&]
  • PARI
    lista(nn) = {forprime(p=2, nn, iferr(if (isprime(q=(p^2+7)/8), print1(q, ", ")), E, ););} \\ Michel Marcus, Feb 18 2018

A247478 Primes p such that (p^4 + 5)/6 is prime.

Original entry on oeis.org

7, 11, 17, 29, 53, 71, 101, 109, 127, 179, 227, 241, 281, 307, 349, 487, 587, 647, 683, 727, 829, 1009, 1061, 1109, 1289, 1487, 1511, 1523, 1567, 1621, 1627, 1709, 1847, 1987, 2017, 2027, 2087, 2099, 2297, 2311, 2393, 2437, 2447, 2521, 2531, 2617, 2729, 2887, 2909, 2969, 3167, 3221, 3301, 3319, 3329, 3347, 3413, 3527
Offset: 1

Views

Author

Zak Seidov, Jan 19 2015

Keywords

Comments

(p^4+5)/6 is an integer for all primes p>3, because then p == (1 or 5) (mod 6) as in A039704, therefore p^2 == 1 (mod 6) and finally p^4 == 1 (mod 6).

Examples

			(7^4+5)/6 = 401 prime, (11^4+5)/6 = 2441 prime.
		

Crossrefs

Cf. A118915.

Programs

  • Magma
    [p: p in PrimesInInterval(3, 4000) | IsPrime((p^4+5) div 6)]; //  Vincenzo Librandi, Jan 21 2015
  • Mathematica
    Select[Prime[Range[10^3]], PrimeQ[(#^4 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
  • PARI
    lista(nn) = {forprime(p=4, nn, if (isprime((p^4 + 5)/6), print1(p, ", ")););} \\ Michel Marcus, Jan 20 2015
    

A253940 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, and (p^8 + 5)/6 are prime.

Original entry on oeis.org

39367, 52163, 67103, 79631, 100981, 280547, 318457, 530711, 605123, 815401, 833923, 834947, 928871, 1313857, 1734067, 1750069, 1800973, 2163979, 2427137, 2598119, 2611027, 2754991, 2764187, 2836259, 3040757, 3101309, 3118697, 3465953, 3646693, 4014809
Offset: 1

Views

Author

Zak Seidov, Jan 20 2015

Keywords

Crossrefs

Subsequence of A253925. Cf. A118915, A247478, A253939.

Programs

  • Magma
    [p: p in PrimesUpTo(10^7) | IsPrime((p^2+5) div 6) and IsPrime((p^4+5) div 6) and IsPrime((p^8+5) div 6)]; // Vincenzo Librandi, Jan 21 2015
  • Mathematica
    Select[Prime[Range[10^6]], PrimeQ[(#^2 + 5) / 6] &&PrimeQ[(#^4 + 5) / 6] &&PrimeQ[(#^8 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
    Select[Prime[Range[300000]],AllTrue[({#^2,#^4,#^8}+5)/6,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 15 2021 *)

A118939 Primes p such that (p^2+3)/4 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 29, 31, 41, 43, 67, 83, 101, 109, 139, 151, 157, 179, 181, 199, 211, 223, 239, 263, 277, 283, 307, 311, 337, 347, 353, 379, 389, 419, 431, 463, 491, 557, 577, 587, 619, 659, 673, 739, 757, 797, 809, 811, 829, 853, 907, 911, 953, 991, 1051
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2+3. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118940, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+3)/4]&]

A241120 Primes p such that (p^3 + 2)/3 is prime.

Original entry on oeis.org

13, 19, 31, 193, 211, 223, 229, 271, 331, 571, 619, 691, 739, 751, 853, 991, 1009, 1039, 1051, 1231, 1303, 1321, 1549, 1741, 1789, 1831, 1993, 1999, 2029, 2089, 2113, 2143, 2203, 2311, 2521, 2551, 2683, 2749, 2851, 3121, 3259, 3331, 3571, 3631, 3823, 3853, 4093
Offset: 1

Views

Author

K. D. Bajpai, Apr 16 2014

Keywords

Examples

			13 is prime and appears in the sequence because (13^3 + 2)/3 = 733 which is a prime.
31 is prime and appears in the sequence because (31^3 + 2)/3 = 9931 which is a prime.
		

Crossrefs

Cf. A109953 (primes p: (p^2+1)/3 is prime).
Cf. A118915 (primes p: (p^2+5)/6 is prime).
Cf. A118918 (primes p: (p^2+11)/12 is prime).
Cf. A241101 (primes p: (p^3-4)/3 is prime).

Programs

  • Maple
    KD:= proc() local a,b;a:=ithprime(n); b:=(a^3+2)/3; if b=floor(b) and isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..1000);
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[(#^3 + 2)/3] &]
    n = 0; Do[If[PrimeQ[(Prime[k]^3 + 2)/3], n = n + 1; Print[n, " ", Prime[k]]], {k, 1, 200000}]          (* b-file *)
  • PARI
    s=[]; forprime(p=2, 8000, if((p^3+2)%3==0 && isprime((p^3+2)/3), s=concat(s, p))); s \\ Colin Barker, Apr 16 2014

A253925 Primes p such that both (p^2 + 5)/6 and (p^4 + 5)/6 are prime.

Original entry on oeis.org

127, 1009, 1709, 2087, 2393, 2969, 3221, 3347, 7309, 7757, 7883, 10529, 11411, 12923, 17569, 18269, 21799, 23311, 23633, 24877, 25703, 26839, 27091, 29429, 35461, 35603, 38431, 39367, 39761, 41887, 42967, 43037, 45361, 45989, 47699, 52163, 59093, 63629, 65323, 67103, 68041, 69481, 70937, 74843, 77813, 77867
Offset: 1

Views

Author

Zak Seidov, Jan 19 2015

Keywords

Comments

Intersection of A118915 and A247478.

Examples

			a(1)=127=A118915(9)=A247478(9). a(2)=1009=A118915(45)=A247478(22).
		

Crossrefs

Programs

  • PARI
    forprime(p=5,1e6,if(isprime((p^2+5)/6) && isprime((p^4+5)/6), print1(p", "))) \\ Charles R Greathouse IV, Jan 19 2015

A253941 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, (p^6 + 5)/6, (p^8 + 5)/6 and (p^10 + 5)/6 are all prime.

Original entry on oeis.org

184279409, 619338131, 913749803, 1057351301, 1507289869, 1600204213, 2845213937, 4725908767, 4760956439, 5374709801, 5518707641, 8724256757, 9044067313, 9387396269, 10992352517, 11937043567, 13493126359, 13593105793, 17891702891, 17897035213, 17954907767, 19690938161, 20227580927, 20922685813, 21313027583, 21717176851
Offset: 1

Views

Author

Zak Seidov, Jan 20 2015

Keywords

Comments

The sequence contains all terms up to 10^10. There are no terms as yet for which (p^12 + 5)/6 is also prime.
No terms < 10^11 with (p^12 + 5)/6 prime. - Chai Wah Wu, Jan 27 2015

Crossrefs

Subsequence of A253976.

Programs

  • PARI
    lista(nn) = forprime(p=5, nn, if(ispseudoprime((p^2 + 5)/6) && ispseudoprime((p^4 + 5)/6) && ispseudoprime((p^6 + 5)/6) && ispseudoprime((p^8 + 5)/6) && ispseudoprime((p^10 + 5)/6), print1(p, ", "))); \\ Jinyuan Wang, Mar 01 2020
  • Python
    from gmpy2 import is_prime, t_divmod
    A253941_list = []
    for p in range(1,10**6,2):
        if is_prime(p):
            p2, x = p**2, 1
            for i in range(5):
                x *= p2
                q, r = t_divmod(x+5,6)
                if r or not is_prime(q):
                    break
            else:
                A253941_list.append(p) # Chai Wah Wu, Jan 22 2015
    

Extensions

a(15)-a(26) from Chai Wah Wu, Jan 22 2015

A253976 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, (p^6 + 5)/6 and (p^8 + 5)/6 are prime.

Original entry on oeis.org

67103, 7524593, 9938069, 10125793, 13042637, 55741139, 55792241, 58429099, 77618323, 92713879, 94554613, 96242761, 103774049, 119753549, 141725501, 142915193, 164899799, 165227399, 173202247, 174728233, 178411771, 184279409, 184356703, 186622003, 195863347, 200406977, 239488649
Offset: 1

Views

Author

Zak Seidov, Jan 21 2015

Keywords

Crossrefs

Subsequence of A253939. Cf. A118915, A247478, A253939, A253940, A253941.

Programs

  • Mathematica
    Select[Prime[Range[132*10^5]],AllTrue[(#^Range[2,8,2]+5)/6,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 11 2018 *)
  • PARI
    forprime(p=1,10^7,k=0;for(i=1,4,P=(p^(2*i)+5)/6;if(P\1==P,if(ispseudoprime(P),k++);if(!ispseudoprime(P),k=0;break));if(P\1!=P,k=0;break));if(k,print1(p,", "))) \\ Derek Orr, Jan 21 2015
Showing 1-10 of 16 results. Next