cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A120082 Numerators of expansion for Debye function for n=1: D(1,x).

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are found under A120083.
D(1,x) = (1/x)*integral_{t=0..x} t/(exp(t)-1) dt (note the factor x on the r.h.s. of the Abramowitz-Stegun link). This is the e.g.f. for {Bernoulli(n)/(n+1)}A027641(n)/A227540(n).%20Thanks%20to%20_Peter%20Luschny">{n>=0}. See A027641(n)/A227540(n). Thanks to _Peter Luschny for asking me to revisit this sequence. - Wolfdieter Lang, Jul 15 2013
Also numerators of coefficients in expansion of x/(exp(x)-1). See A227830 for denominators. - N. J. A. Sloane, Aug 01 2013

Examples

			Rationals r(n): [1, -1/4, 1/36, 0, -1/3600, 0, 1/211680, 0, -1/10886400, ...].
		

References

  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 23.

Crossrefs

Programs

  • Magma
    [Numerator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // G. C. Greubel, May 01 2023
    
  • Maple
    A120082 := proc(n) local b; if n = 0 then b := 1 ; elif n = 1 then b := -1/4 ; elif type(n, 'odd') then b := 0; else b := bernoulli(n)/(n+1)! ; fi; numer(b) ; end: # R. J. Mathar, Sep 03 2009
    gf := (1 - x/4 + sum((bernoulli(2*k)/((2*k+1)*(2*k)!))*x^(2*k), k=0..infinity)):
    a := proc(n) local ser; if n = 0 then return 1 fi; ser := series(gf, x, n+2):
    numer(coeff(ser, x, n)) end: seq(a(n), n = 0..40); # Peter Luschny, Dec 02 2022
  • Mathematica
    Table[Numerator[BernoulliB[n]/((n+1)!)], {n,0,50}] (* G. C. Greubel, May 01 2023 *)
  • SageMath
    def A120082(n): return numerator(bernoulli(n)/factorial(n+1))
    [A120082(n) for n in range(51)] # G. C. Greubel, May 01 2023

Formula

a(n) = numerator(r(n)), with r(n) = [x^n] (1 - x/4 + Sum_{k>=0} (B(2*k)/((2*k+1)*(2*k)!))*x^(2*k)), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(B(n)/(n+1)!), n >= 0. See the above comment on the e.g.f. D(1,x). - Wolfdieter Lang, Jul 15 2013
Apart from the sign of a(1) this sequence differs from A358625 for the first time at n = 68. - Peter Luschny, Dec 02 2022

Extensions

Edited after Andrey Zabolotskiy noticed an inconsistency by Peter Luschny, Dec 02 2022

A120086 Numerators of expansion of Debye function for n=4: D(4,x).

Original entry on oeis.org

1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are found under A120087.
See the W. Lang link under A120080 for more details on the general case D(n,x), n= 1, 2, ... D(4,x) is the e.g.f. of the rational sequence {4*B(n)/(n+4)}, n >= 0. See A227573/A227574. - Wolfdieter Lang, Jul 17 2013

Examples

			Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
		

Crossrefs

Cf. A060054. [From R. J. Mathar, Aug 07 2008]
Cf. A000367/A002445, A027641/A027642, A120097, A227573/A227574 (D(4,x) as e.g.f.). - Wolfdieter Lang, Jul 17 2013

Programs

  • Magma
    [Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n,0,36}] (* Jean-François Alcover, Jun 21 2013 *)
  • SageMath
    [numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = numerator(r(n)), with r(n) = [x^n](1 - 4*x/(2*(4+1)) + 2*Sum_{k >= 0} (B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013

A120087 Denominators of expansion of Debye function for n=4: D(4,x).

Original entry on oeis.org

1, 5, 18, 1, 1440, 1, 75600, 1, 3628800, 1, 167650560, 1, 5230697472000, 1, 336259123200, 1, 53353114214400000, 1, 28100018194440192000, 1, 4817145976189747200000, 1, 91657150256046735360000, 1, 11856768957122205686169600000, 1, 1396008903899788738560000000, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

From Wolfdieter Lang, Jul 17 2013: (Start)
The numerators are given in A120086.
See the link under A120080 for D(n,4) as e.g.f. of 4*B(n)/(n+4) = A227573(n)/A227574(n), n>= 0. (End)

Examples

			Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
		

Crossrefs

Programs

  • Magma
    [Denominator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    Table[Denominator[4*BernoulliB[n]/((n+4)*n!)], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
  • SageMath
    [denominator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = denominator(r(n)), with r(n) = [x^n](1 - 2*x/5 + 2*Sum_{k >= 0}(B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013

A120084 Numerators of expansion for Debye function for n=2: D(2,x).

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are found under A120085.
This sequence appears to coincide with A120082.

Examples

			Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960, ...].
		

Crossrefs

Programs

  • Magma
    [Numerator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    max = 38; Numerator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
    Table[Numerator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
  • SageMath
    [numerator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = numerator(r(n)), with r(n) = [x^n]( 1 - x/3 + Sum_{k >= 1} (B(2*k)/((k+1)*(2*k)!))*x^(2*k) ), |x|<2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(2*B(n)/((n+2)*n!)), n >= 0. See the comment on the e.g.f. D(2,x) in A120085. - Wolfdieter Lang, Dec 03 2022

A120085 Denominators of expansion for Debye function for n=2: D(2,x).

Original entry on oeis.org

1, 3, 24, 1, 2160, 1, 120960, 1, 6048000, 1, 287400960, 1, 9153720576000, 1, 597793996800, 1, 96035605585920000, 1, 51090942171709440000, 1, 8831434289681203200000, 1, 169213200472701665280000, 1, 22019713777512667702886400000, 1, 2605883287279605645312000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Numerators are found under A120084.
D(2,x) := (2/x^2)*Integral_{0..x} t^2/(exp(t)-1) dt is the e.g.f. of 2*B(n)/(n+2), n>=0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). Proof by using the e.g.f. for {k*B(k-1)} (with 0 for k=0) and integrating termwise (allowed for |x| <= r < rho with small enough rho).
See the Abramowitz-Stegun link for the integral and an expansion. - Wolfdieter Lang, Jul 16 2013

Examples

			Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960,...].
		

Crossrefs

Cf. A000367/A002445, A027641/A027642, A120080/A120081 (D(3,x) expansion), A120082/A120083 (D(1,x) expansion), A120084, A120086, A120087.

Programs

  • Magma
    [Denominator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    max = 25; Denominator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]](* Jean-François Alcover, Oct 04 2011 *)
    Table[Denominator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
  • SageMath
    [denominator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - x/3 + Sum_{k >= 1} (B(2*k)/((k+1)*(2*k)!))*x^(2*k) ), |x|<2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(2*B(n)/((n+2)*n!)), n >= 0. See the comment on the e.g.f. D(2,x) above. - Wolfdieter Lang, Jul 16 2013

A172282 Squares of Bernoulli number denominators A027642.

Original entry on oeis.org

1, 4, 36, 1, 900, 1, 1764, 1, 900, 1, 4356, 1, 7452900, 1, 36, 1, 260100, 1, 636804, 1, 108900, 1, 19044, 1, 7452900, 1, 36, 1, 756900, 1, 205119684, 1, 260100, 1, 36, 1, 3683290256100, 1, 36, 1, 183060900, 1, 3261636, 1, 476100, 1, 79524, 1, 2153888100, 1, 4356, 1, 2528100
Offset: 0

Views

Author

Paul Curtz, Jan 30 2010

Keywords

Comments

Compare the sequence for example with A120083.

Crossrefs

Programs

Formula

a(n) = A027642(n)^2 .

Extensions

Edited and extended by R. J. Mathar, Feb 02 2010

A227540 Denominator of the rationals obtained from the e.g.f. D(1,x), a Debye function.

Original entry on oeis.org

1, 4, 18, 1, 150, 1, 294, 1, 270, 1, 726, 1, 35490, 1, 90, 1, 8670, 1, 15162, 1, 6930, 1, 3174, 1, 68250, 1, 162, 1, 25230, 1, 443982, 1, 16830, 1, 210, 1, 71010030, 1, 234, 1, 554730, 1, 77658, 1, 31050, 1, 13254, 1, 2274090, 1, 3366, 1, 84270, 1, 43890, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 15 2013

Keywords

Comments

The numerator sequence seems to be the one of the Bernoulli numbers A027641.
D(1,x) := (1/x)*int(t/(exp(t)-1),t=0..x) which is (1/x)times the Debye function of the Abramowitz-Stegun link for n=1, is the e.g.f. for {B(k)/(k+1)}, k=0..infinity, with the Bernoulli numbers B(k) = A027641(k)/A027642(k). This follows after using the e.g.f. t/(exp(t)-1) of {B(k)} and integrating term by term (allowed for |x| <= r < rho for some small enough rho).

Crossrefs

Cf. A027641/A027642 (Bernoulli), A120082/A120083 for the rationals B(n)/(n+1)!.

Formula

a(n) = denominator(B(n)/(n+1)) (in lowest terms), n >= 0. See the comment on the e.g.f. D(1,x) above.

A141588 Numerators of expansion for Debye function (D(1,x)) A120082 with 1's instead of 0's.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -691, 1, 1, 1, -3617, 1, 43867, 1, -174611, 1, 77683, 1, -236364091, 1, 657931, 1, -3392780147, 1, 1723168255201, 1, -7709321041217, 1, 151628697551, 1, -26315271553053477373
Offset: 0

Views

Author

Paul Curtz, Aug 20 2008

Keywords

Comments

(Bernoulli numbers numerators) A027641(n)/a(n) is an integer sequence.
Note 1's in denominators A120083. A120082 and A027641 are analogous.

Programs

Extensions

Typo a(14)=7 instead of 1 fixed by Jean-François Alcover, Aug 09 2012

A341908 Decimal expansion of Integral_{x=0..1} x/(exp(x)-1) dx.

Original entry on oeis.org

7, 7, 7, 5, 0, 4, 6, 3, 4, 1, 1, 2, 2, 4, 8, 2, 7, 6, 4, 1, 7, 5, 8, 6, 5, 4, 5, 4, 2, 5, 7, 1, 0, 5, 0, 7, 1, 9, 2, 4, 7, 7, 2, 9, 6, 2, 2, 9, 0, 0, 0, 8, 6, 9, 1, 7, 9, 4, 9, 4, 5, 4, 1, 0, 6, 9, 9, 6, 6, 8, 4, 8, 8, 6, 2, 4, 9, 8, 0, 3, 7, 6, 8, 7, 7, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Jun 04 2021

Keywords

Examples

			0.77750463411224827641758654542571050719247729622900...
		

References

  • Alvaro Meseguer, Fundamentals of Numerical Mathematics for Physicists and Engineers, Wiley, 2020, Chapter 4, exercise 12, p. 128.
  • John Michael Rassias, Geometry, Analysis, and Mechanics, World Scientific, 1994, p. 14.

Crossrefs

Programs

  • Maple
    evalf(-dilog(exp(1))-1/2, 140);  # Alois P. Heinz, Jun 04 2021
  • Mathematica
    RealDigits[PolyLog[2, 1-1/E], 10, 100][[1]]
  • PARI
    intnum(x=0, 1, x/(exp(x)-1)) \\ Michel Marcus, Jun 04 2021

Formula

Equals D_1(1) = Sum_{k>=0} A120082(k)/A120083(k), where D_n(x) are the Debye functions.
Equals Li_2(1-1/e) = -1/2 - Li_2(1-e) = Pi^2/6 - 1 + log(e-1) - Li_2(1/e), where Li_2(x) is the dilogarithm function.
Equals Sum_{k>=0} B(k)/(k+1)! = -1/2 + Sum_{k>=0} (-1)^k*B(k)/(k+1)! = -1/4 + Sum_{k>=0} B(2*k)/(2*k+1)!, where B(k) is the k-th Bernoulli number.
Equals Sum_{k>=1} (1 - (k+1)*exp(-k))/k^2.
Showing 1-9 of 9 results.