A081200
6th binomial transform of (0,1,0,1,0,1,...), A000035.
Original entry on oeis.org
0, 1, 12, 109, 888, 6841, 51012, 372709, 2687088, 19200241, 136354812, 964249309, 6798573288, 47834153641, 336059778612, 2358521965909, 16540171339488, 115933787267041, 812299450322412, 5689910849522509, 39848449432985688, 279034513462540441, 1953718431395986212
Offset: 0
The a(2) = 12 words of length 2 over {A, B, C, D, E, F, G} with say, A, appearing an odd number of times (that is once) are: AB, AC, AD, AE, AF, AG; BA, CA, DA, EA, FA, GA. - _Wolfdieter Lang_, Jul 17 2017
-
[7^n/2-5^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
-
CoefficientList[Series[x / ((1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{12,-35},{0,1},30] (* Harvey P. Dale, Feb 07 2014 *)
-
[lucas_number1(n,12,35) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009
A190540
a(n) = 7^n - 2^n.
Original entry on oeis.org
0, 5, 45, 335, 2385, 16775, 117585, 823415, 5764545, 40353095, 282474225, 1977324695, 13841283105, 96889002215, 678223056465, 4747561477175, 33232930504065, 232630513856135, 1628413597648305, 11398895184848855, 79792266296563425, 558545864081186855, 3909821048578793745
Offset: 0
-
[7^n -2^n: n in [0..30]];
-
CoefficientList[Series[5 x/((1 - 2 x) (1 - 7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *)
-
a(n)=7^n-1<Charles R Greathouse IV, Jun 08 2011
A190541
a(n) = 7^n - 3^n.
Original entry on oeis.org
0, 4, 40, 316, 2320, 16564, 116920, 821356, 5758240, 40333924, 282416200, 1977149596, 13840755760, 96887416084, 678218289880, 4747547161036, 33232887522880, 232630384847044, 1628413210489960, 11398894023111676, 79792262810827600, 558545853622930804, 3909821017201928440
Offset: 0
-
[7^n - 3^n: n in [0..30]];
-
A190541:=n->7^n-3^n: seq(A190541(n), n=0..25); # Wesley Ivan Hurt, Oct 04 2014
-
Table[7^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x /((1 - 3 x) (1 - 7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *)
LinearRecurrence[{10,-21},{0,4},20] (* Harvey P. Dale, Mar 30 2015 *)
-
a(n)=7^n-3^n \\ Charles R Greathouse IV, Jun 02 2011
A190542
a(n) = 7^n - 4^n.
Original entry on oeis.org
0, 3, 33, 279, 2145, 15783, 113553, 807159, 5699265, 40091463, 281426673, 1973132439, 13824509985, 96821901543, 677954637393, 4746487768119, 33228635602305, 232613334118023, 1628344878433713, 11398620307466199, 79791166785984225, 558541466036772903, 3909803456396943633, 27368676971336738679, 191580949905589703745
Offset: 0
-
[7^n -4^n: n in [0..30]];
-
A190542:=n->7^n - 4^n; seq(A190542(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014
-
Table[7^n - 4^n, {n, 0, 30}] (* Wesley Ivan Hurt, Feb 26 2014 *)
LinearRecurrence[{11,-28},{0,3},30] (* Harvey P. Dale, Dec 21 2019 *)
-
a(n)=7^n-4^n \\ Charles R Greathouse IV, Jun 02 2011
-
def A190542(n): return pow(7,n) - pow(4,n)
print([A190542(n) for n in range(31)]) # G. C. Greubel, Nov 13 2024
A248340
a(n) = 10^n - 5^n.
Original entry on oeis.org
0, 5, 75, 875, 9375, 96875, 984375, 9921875, 99609375, 998046875, 9990234375, 99951171875, 999755859375, 9998779296875, 99993896484375, 999969482421875, 9999847412109375, 99999237060546875, 999996185302734375, 9999980926513671875
Offset: 0
-
[10^n-5^n: n in [0..30]];
-
Table[10^n - 5^n, {n,0,30}]
CoefficientList[Series[5 x/((1-5 x)(1-10 x)), {x, 0, 30}], x]
-
def A248340(n): return pow(10,n) - pow(5,n)
print([A248340(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024
Showing 1-5 of 5 results.
Comments