cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A081200 6th binomial transform of (0,1,0,1,0,1,...), A000035.

Original entry on oeis.org

0, 1, 12, 109, 888, 6841, 51012, 372709, 2687088, 19200241, 136354812, 964249309, 6798573288, 47834153641, 336059778612, 2358521965909, 16540171339488, 115933787267041, 812299450322412, 5689910849522509, 39848449432985688, 279034513462540441, 1953718431395986212
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of A081199.
Conjecture (verified up to a(9)): Number of collinear 5-tuples of points in a 5 X 5 X 5 X ... n-dimensional cubic grid. - Ron Hardin, May 24 2010
a(n) is also the total number of words of length n, over an alphabet of seven letters, of which one of them appears an odd number of times. See the Lekraj Beedassy, Jul 22 2003, comment on A006516 (4-letter case), and the Balakrishnan reference there. For the 2-, 3-, 5-, 6- and 8-letter case analogs see A131577, A003462, A005059, A081199, A081201 respectively. - Wolfdieter Lang, Jul 17 2017

Examples

			The a(2) = 12 words of length 2 over {A, B, C, D, E, F, G} with say, A, appearing an odd number of times (that is once) are: AB, AC, AD, AE, AF, AG; BA, CA, DA, EA, FA, GA. - _Wolfdieter Lang_, Jul 17 2017
		

Crossrefs

Cf. A000035, A003462, A005059, A006516, A081199, A081201 (binomial transform, and 8-letter analog), A121213, A131577.
Apart from offset same as A016161.

Programs

  • Magma
    [7^n/2-5^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[x / ((1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{12,-35},{0,1},30] (* Harvey P. Dale, Feb 07 2014 *)
  • Sage
    [lucas_number1(n,12,35) for n in range(0, 21)] # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 12*a(n-1) - 35*a(n-2), a(0) = 0, a(1) = 1.
G.f.: x/((1-5*x)*(1-7*x)).
a(n) = 7^n/2 - 5^n/2.
a(n) = Sum_{k=0..n-1} 7^k * 5^(n-k-1), with a(0)=0. - Reinhard Zumkeller, Aug 01 2010
a(n) = A121213(n)/2. - Reinhard Zumkeller, Aug 01 2010
E.g.f.: exp(5*x)*(exp(2*x) - 1)/2. - Stefano Spezia, Jun 19 2021

A190540 a(n) = 7^n - 2^n.

Original entry on oeis.org

0, 5, 45, 335, 2385, 16775, 117585, 823415, 5764545, 40353095, 282474225, 1977324695, 13841283105, 96889002215, 678223056465, 4747561477175, 33232930504065, 232630513856135, 1628413597648305, 11398895184848855, 79792266296563425, 558545864081186855, 3909821048578793745
Offset: 0

Views

Author

Vincenzo Librandi, Jun 02 2011

Keywords

Comments

Length-n words from letters {1,2,...,7} with at least one letter >2. [Joerg Arndt, Jun 02 2011]

Crossrefs

Programs

  • Magma
    [7^n -2^n: n in [0..30]];
    
  • Mathematica
    CoefficientList[Series[5 x/((1 - 2 x) (1 - 7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *)
  • PARI
    a(n)=7^n-1<Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 9*a(n-1) - 14*a(n-2).
G.f.: 5*x/((1-2*x)*(1-7*x)). - Vincenzo Librandi, Oct 04 2014
a(n) = 5*A016130(n-1). - R. J. Mathar, Mar 10 2022
E.g.f.: exp(2*x)*(exp(5*x) - 1). - Elmo R. Oliveira, Sep 10 2024

A190541 a(n) = 7^n - 3^n.

Original entry on oeis.org

0, 4, 40, 316, 2320, 16564, 116920, 821356, 5758240, 40333924, 282416200, 1977149596, 13840755760, 96887416084, 678218289880, 4747547161036, 33232887522880, 232630384847044, 1628413210489960, 11398894023111676, 79792262810827600, 558545853622930804, 3909821017201928440
Offset: 0

Views

Author

Vincenzo Librandi, Jun 02 2011

Keywords

Comments

Length-n words from letters {1,2,...,7} with at least one letter greater than 3. - Joerg Arndt, Jun 02 2011

Crossrefs

Similar sequences: A121213, A016169.

Programs

Formula

a(n) = 10*a(n-1) - 21*a(n-2).
G.f.: 4*x/((1-3*x)*(1-7*x)). - Vincenzo Librandi, Oct 04 2014
a(n) = A000420(n) - A000244(n). - Wesley Ivan Hurt, Oct 04 2014
E.g.f.: 2*exp(5*x)*sinh(2*x). - Elmo R. Oliveira, Mar 31 2025
a(n) = 4*A016138(n-1). - R. J. Mathar, Jun 07 2025

A190542 a(n) = 7^n - 4^n.

Original entry on oeis.org

0, 3, 33, 279, 2145, 15783, 113553, 807159, 5699265, 40091463, 281426673, 1973132439, 13824509985, 96821901543, 677954637393, 4746487768119, 33228635602305, 232613334118023, 1628344878433713, 11398620307466199, 79791166785984225, 558541466036772903, 3909803456396943633, 27368676971336738679, 191580949905589703745
Offset: 0

Views

Author

Vincenzo Librandi, Jun 02 2011

Keywords

Comments

Length-n words from letters {1,2,...,7} with at least one letter greater than 4. - Joerg Arndt, Jun 02 2011

Crossrefs

Programs

Formula

a(n) = 11*a(n-1) - 28*a(n-2).
a(n) = A000420(n) - A000302(n). - Michel Marcus, Feb 26 2014
From G. C. Greubel, Nov 13 2024: (Start)
G.f.: 3*x/((1-4*x)*(1-7*x)).
E.g.f.: 2*exp(11*x/2)*sinh(3*x/2). (End)

A248340 a(n) = 10^n - 5^n.

Original entry on oeis.org

0, 5, 75, 875, 9375, 96875, 984375, 9921875, 99609375, 998046875, 9990234375, 99951171875, 999755859375, 9998779296875, 99993896484375, 999969482421875, 9999847412109375, 99999237060546875, 999996185302734375, 9999980926513671875
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-5^n: A005062 (k=6), A121213 (k=7), A191468 (k=8), A191466 (k=9), this sequence (k=10), A139743 (k=11).

Programs

  • Magma
    [10^n-5^n: n in [0..30]];
    
  • Mathematica
    Table[10^n - 5^n, {n,0,30}]
    CoefficientList[Series[5 x/((1-5 x)(1-10 x)), {x, 0, 30}], x]
  • Python
    def A248340(n): return pow(10,n) - pow(5,n)
    print([A248340(n) for n in range(41)]) # G. C. Greubel, Nov 13 2024

Formula

G.f.: 5*x/((1-5*x)*(1-10*x)).
a(n) = 15*a(n-1) - 50*a(n-2).
a(n) = 5^n*(2^n-1) = A000351(n) * A000225(n) = A011557(n) - A000351(n).
a(n) = 5*A016164(n-1).
a(n) = A016164(n) - A011557(n).
E.g.f.: exp(10*x) - exp(5*x). - G. C. Greubel, Nov 13 2024
Showing 1-5 of 5 results.