cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A080774 Numbers with two prime factors: (4*i+1)*(4*j+3).

Original entry on oeis.org

15, 35, 39, 51, 55, 87, 91, 95, 111, 115, 119, 123, 143, 155, 159, 183, 187, 203, 215, 219, 235, 247, 259, 267, 287, 291, 295, 299, 303, 319, 323, 327, 335, 339, 355, 371, 391, 395, 403, 407, 411, 415, 427, 447, 451, 471, 511, 515, 519, 527, 535, 543, 551
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2003

Keywords

Comments

Semiprimes of the form 4k+3. - Giovanni Teofilatto, Jun 15 2005
There are 971 semiprimes of the form 4k+3 below 10,000.

Examples

			a(1) = 15 = 3*5 = (4*1+1)*(4*0+3).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15, 1000, 2], Last /@ FactorInteger[#] == {1, 1} && IntegerQ[(# - 3)/4] &] (* Vladimir Joseph Stephan Orlovsky, May 07 2011 *)
    Select[4*Range[200]+3,PrimeOmega[#]==2&] (* Harvey P. Dale, Nov 02 2024 *)
  • PARI
    isok(k) = k % 4 == 3 && bigomega(k) == 2; \\ Amiram Eldar, Jun 15 2025

A009177 Numbers that are the hypotenuses of more than one Pythagorean triangle.

Original entry on oeis.org

25, 50, 65, 75, 85, 100, 125, 130, 145, 150, 169, 170, 175, 185, 195, 200, 205, 221, 225, 250, 255, 260, 265, 275, 289, 290, 300, 305, 325, 338, 340, 350, 365, 370, 375, 377, 390, 400, 410, 425, 435, 442, 445, 450, 455, 475, 481, 485, 493, 500, 505, 507, 510, 520, 525
Offset: 1

Views

Author

Keywords

Comments

Also, hypotenuses of Pythagorean triangles in Pythagorean triples (a, b, c, a < b < c) such that a and b are the hypotenuses of Pythagorean triangles, where the Pythagorean triples (x1, y1, a) and (x2, y2, b) are similar triangles. Sequence gives c values. - Naohiro Nomoto
Any multiple of a term of this sequence is also a term. The primitive elements are the products of two primes, not necessarily distinct, that are == 1 (mod 4): A121387. - Franklin T. Adams-Watters, Dec 21 2015
Numbers appearing more than once in A009000. - Sean A. Irvine, Apr 20 2018

Examples

			25^2 = 24^2 + 7^2 = 20^2 + 15^2.
E.g., (a = 15, b = 20, c = 25, a^2 + b^2=c^2); 15 and 20 are the hypotenuses of Pythagorean triangles. The Pythagorean triples (9, 12, 15) and (12, 16, 20) are similar triangles. So c = 25 is in the sequence. - _Naohiro Nomoto_
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) add(`if` (t[1] mod 4 = 1, t[2],0), t = ifactors(n)[2]) >= 2 end proc:
    select(filter, [$1..1000]); # Robert Israel, Dec 21 2015
  • Mathematica
    f[n_] := Module[{i = 0, k = 0}, Do[If[Sqrt[n^2 - i^2] == IntegerPart[Sqrt[n^2 - i^2]], k++], {i, n - 1, 1, -1}]; k];
    lst = {}; Do[If[f[n] > 2, AppendTo[lst, n]], {n, 4*5!}];
    lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)

Formula

Of the form b(i)*b(j)*k, where b(n) is A004431(n). Numbers whose prime factorization includes at least 2 (not necessarily distinct) primes congruent to 1 mod 4. - Franklin T. Adams-Watters, May 03 2006. [Typo corrected by Ant King, Jul 17 2008]

A131574 Numbers n that are the product of two distinct odd primes and x^2 + y^2 = n has integer solutions.

Original entry on oeis.org

65, 85, 145, 185, 205, 221, 265, 305, 365, 377, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 745, 785, 793, 865, 901, 905, 949, 965, 985, 1037, 1073, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1345, 1385, 1405, 1417, 1465, 1469
Offset: 1

Views

Author

Colin Barker, Aug 28 2007, corrected Aug 29 2007

Keywords

Comments

The two primes are of the form 4*k + 1.

Examples

			65 is in the sequence because x^2 + y^2 = 65 = 5*13 has solutions (x,y) = (1,8), (4,7), (7,4) and (8,1).
		

Crossrefs

Programs

  • PARI
    dop(d, nmax) = {
      my(L=List(), v=vector(d,m,1)~, f);
      for(n=1, nmax,
        f=factorint(n);
        if(#f~==d && f[1,1]>2 && f[,2]==v && f[,1]%4==v, listput(L, n))
      );
      Vec(L)
    }
    dop(2, 3000) \\ Colin Barker, Nov 15 2015

A107978 Products of two primes of the form 4n+3 (A002145).

Original entry on oeis.org

9, 21, 33, 49, 57, 69, 77, 93, 121, 129, 133, 141, 161, 177, 201, 209, 213, 217, 237, 249, 253, 301, 309, 321, 329, 341, 361, 381, 393, 413, 417, 437, 453, 469, 473, 489, 497, 501, 517, 529, 537, 553, 573, 581, 589, 597, 633, 649, 669, 681, 713, 717, 721, 737
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2005

Keywords

Comments

Every odd semiprime must be in one of three disjoint sets: the product of two primes of the form 4n+1 (A121387), the product of two primes of the form 4n+3 (A107978), or the product of a prime of the form 4n+1 and a prime of the form 4n+3 (A080774).

Crossrefs

Union of A131574 and A080109.
Third row of A121388.

Programs

  • Mathematica
    p = Select[ Prime@ Range@ 60, Mod[ #, 4] == 3 &]; Take[ Sort@ Flatten@ Table[ p[[i]] p[[j]], {j, 30}, {i, j}], 54] (* or *)
    fQ[n_] := Block[{fi = FactorInteger@ n}, Plus @@ Last /@ fi == 2 && Union@ Mod[ First /@ fi, 4] == {3}]; Select[ Range@ 748, fQ@# &] (* Robert G. Wilson v, May 20 2010 *)

Formula

{a(n)} = {p*q: p and q both elements of A002145}.

Extensions

Edited by N. J. A. Sloane, May 20 2010

A108181 Semiprimes of the form 4n + 1.

Original entry on oeis.org

9, 21, 25, 33, 49, 57, 65, 69, 77, 85, 93, 121, 129, 133, 141, 145, 161, 169, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265, 289, 301, 305, 309, 321, 329, 341, 361, 365, 377, 381, 393, 413, 417, 437, 445, 453, 469, 473, 481, 485, 489, 493, 497
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 14 2005

Keywords

Comments

Either a(n)=(4*i+1)*(4*j+1) or a(n)=(4*i+3)*(4*j+3); - Reinhard Zumkeller, Jun 15 2005
A107978 is a subsequence. - Reinhard Zumkeller, Jun 15 2005

Crossrefs

Programs

  • Magma
    IsSemiprime:= func; [s: n in [2..150] | IsSemiprime(s) where s is 4*n + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    Select[4Range[0, 150] + 1, PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Extensions

Corrected and extended by Reinhard Zumkeller, Jun 15 2005

A121388 Table read by antidiagonals which classifies the proper odd numbers by form (i,j) where i and j are the number of prime factors of the form 4k-1 and 4k+1 respectively.

Original entry on oeis.org

3, 5, 7, 9, 13, 11, 15, 21, 17, 19, 25, 35, 33, 29, 23, 27, 65, 39, 49, 37, 31, 45, 63, 85, 51, 57, 41, 43, 75, 105, 99, 145, 55, 69, 53, 47, 125, 175, 117, 147, 169, 87, 77, 61, 59, 81, 325, 195, 153, 171, 185, 91, 93, 73, 67, 135, 189, 425, 255, 165, 207, 205, 95, 121, 89
Offset: 1

Views

Author

Alford Arnold, Jul 26 2006

Keywords

Examples

			Table begins:
Row(i,j)
1: (1,0) 3,7,11,19,23,31,43,47,59,67,71,79,83,103,... (A002145)
2: (0,1) 5,13,17,29,37,41,53,61,73,89,97,101,109,... (A002144)
3: (2,0) 9,21,33,49,57,69,77,93,121,129,133,141,... (A107978)
4: (1,1) 15,35,39,51,55,87,91,95,111,115,119,... (A080774)
5: (0,2) 25,65,85,145,169,185,205,221,265,289,... (A121387)
6: (3,0) 27,63,99,147,171,207,231,279,343,...
7: (2,1) 45,105,117,153,165,245,261,273,...
8: (1,2) 75,175,195,255,275,435,455,...
9: (0,3) 125,325,425,725,845,925,...
10:(4,0) 81,189,297,441,513,...
11:(3,1) 135,315,351,459,...
12:(2,2) 225,525,585,...
13:(1,3) 375,875,...
14:(0,4) 625,...
		

Crossrefs

Cf. A120027. Subsequences begin A002145 A002144 A107978 A080774 A121387.

Extensions

Edited, corrected and extended by Ray Chandler, Aug 08 2010
Showing 1-6 of 6 results.