cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A016105 Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).

Original entry on oeis.org

21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, 201, 209, 213, 217, 237, 249, 253, 301, 309, 321, 329, 341, 381, 393, 413, 417, 437, 453, 469, 473, 489, 497, 501, 517, 537, 553, 573, 581, 589, 597, 633, 649, 669, 681, 713, 717, 721, 737, 749, 753, 781, 789
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A084109. - Ralf Stephan and David W. Wilson, Apr 17 2005
Subsequence of A046388. - Altug Alkan, Dec 10 2015
Subsequence of A339817. No common terms with A339870. - Antti Karttunen, Dec 26 2020
Named after the Venezuelan-American computer scientist Manuel Blum (b. 1938). - Amiram Eldar, Jun 06 2021
First introduced by Blum, Blum, & Shub for the generation of pseudorandom numbers and later applied (by Manuel Blum and other authors) to zero-knowledge proofs. - Charles R Greathouse IV, Sep 26 2024

References

  • Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudorandom number generator, SIAM Journal on computing 15:2 (1986), pp. 364-383.

Crossrefs

Intersection of A005117 and A107978.
Also, subsequence of the following sequences: A046388, A084109, A091113, A167181, A339817.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a016105 n = a016105_list !! (n-1)
    a016105_list = f [3,7] (drop 2 a002145_list) 21 (singleton 21) where
       f qs (p:p':ps) t s
         | m < t     = m : f qs (p:p':ps) t s'
         | otherwise = m : f (p:qs) (p':ps) t' (s' `union` (fromList pqs))
         where (m,s') = deleteFindMin s
               t' = head $ dropWhile (> 3*p') pqs
               pqs = map (p *) qs
    -- Reinhard Zumkeller, Sep 23 2011
    
  • Maple
    N:= 10000: # to get all terms <= N
    Primes:= select(isprime, [seq(i,i=3..N/3,4)]):
    S:=select(`<=`,{seq(seq(Primes[i]*Primes[j],i=1..j-1),j=2..nops(Primes))},N):
    sort(convert(S,list)); # Robert Israel, Dec 11 2015
  • Mathematica
    With[{upto = 820}, Select[Union[Times@@@Subsets[ Select[Prime[Range[ PrimePi[ NextPrime[upto/3]]]], Mod[#, 4] == 3 &], {2}]], # <= upto &]] (* Harvey P. Dale, Aug 19 2011 *)
    Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &] (* Alonso del Arte, Nov 18 2015 *)
  • PARI
    list(lim)=my(P=List(),v=List(),t,p); forprimestep(p=3,lim\3,4, listput(P,p)); for(i=2,#P, p=P[i]; for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 01 2016, updated Sep 26 2024
    
  • PARI
    isA016105(n) = (2==omega(n)&&2==bigomega(n)&&1==(n%4)&&3==((factor(n)[1,1])%4)); \\ Antti Karttunen, Dec 26 2020
    
  • Perl
    use ntheory ":all"; forcomposites { say if ($ % 4) == 1 && is_square_free($) && scalar(factor($)) == 2 && !scalar(grep { ($ % 4) != 3 } factor($)); } 10000; # _Dana Jacobsen, Dec 10 2015
    
  • Python
    from sympy import factorint
    def ok(n):
        fn = factorint(n)
        return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn)
    print([k for k in range(790) if ok(k)]) # Michael S. Branicky, Dec 20 2021

Formula

a(n) = A195758(n) * A195759(n). - Reinhard Zumkeller, Sep 23 2011
a(n) ~ 4n log n/log log n. - Charles R Greathouse IV, Sep 17 2022

Extensions

More terms from Erich Friedman

A080774 Numbers with two prime factors: (4*i+1)*(4*j+3).

Original entry on oeis.org

15, 35, 39, 51, 55, 87, 91, 95, 111, 115, 119, 123, 143, 155, 159, 183, 187, 203, 215, 219, 235, 247, 259, 267, 287, 291, 295, 299, 303, 319, 323, 327, 335, 339, 355, 371, 391, 395, 403, 407, 411, 415, 427, 447, 451, 471, 511, 515, 519, 527, 535, 543, 551
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2003

Keywords

Comments

Semiprimes of the form 4k+3. - Giovanni Teofilatto, Jun 15 2005
There are 971 semiprimes of the form 4k+3 below 10,000.

Examples

			a(1) = 15 = 3*5 = (4*1+1)*(4*0+3).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[15, 1000, 2], Last /@ FactorInteger[#] == {1, 1} && IntegerQ[(# - 3)/4] &] (* Vladimir Joseph Stephan Orlovsky, May 07 2011 *)
    Select[4*Range[200]+3,PrimeOmega[#]==2&] (* Harvey P. Dale, Nov 02 2024 *)
  • PARI
    isok(k) = k % 4 == 3 && bigomega(k) == 2; \\ Amiram Eldar, Jun 15 2025

A057948 S-primes: let S = {1,5,9, ... 4i+1, ...}; then an S-prime is in S but is not divisible by any members of S except itself and 1.

Original entry on oeis.org

5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 193, 197, 201, 209, 213, 217, 229, 233, 237, 241, 249, 253, 257, 269, 277, 281, 293, 301, 309, 313, 317, 321, 329
Offset: 1

Views

Author

Jud McCranie, Oct 14 2000

Keywords

Comments

Factorization in S is not unique. See related sequences.
Kostrikin calls these numbers quasi-primes. - Arkadiusz Wesolowski, Aug 19 2017
a(n) is a prime of the form 4*n + 1 or a product of 2 primes of the form 4*n + 3. - David A. Corneth, Nov 10 2018

Examples

			21 is of the form 4i+1, but it is not divisible by any smaller S-primes, so 21 is in the sequence.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 101, problem 1.
  • A. I. Kostrikin, Introduction to Algebra, universitext, Springer, 1982.

Crossrefs

Union of A002144 and A107978. - Charlie Neder, Nov 03 2018

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {seq(4*i+1,i=1..floor((N-1)/4))}:
    for n from 1 while n <= nops(S) do
      r:= S[n];
      S:= S minus {seq(i*r,i=2..floor(N/r))};
    od:
    S; # Robert Israel, Dec 14 2014
  • Mathematica
    nn = 100; Complement[Table[4 k + 1, {k, 1, nn}], Union[Flatten[ Table[Table[(4 k + 1) (4 j + 1), {k, 1, j}], {j, 1, nn}]]]] (* Geoffrey Critzer, Dec 14 2014 *)
  • PARI
    is(n) = if(n % 2 == 0, return(0)); if(n%4 == 1 && isprime(n), return(1)); f = factor(n); if(vecsum(f[, 2]) != 2, return(0)); for(i = 1, #f[, 1], if(f[i, 1] % 4 == 1, return(0))); n>1 \\ David A. Corneth, Nov 10 2018

Formula

a(n) ~ C n log n / log log n, where C > 2. - Thomas Ordowski, Sep 09 2012

Extensions

Offset corrected by Charlie Neder, Nov 03 2018

A108181 Semiprimes of the form 4n + 1.

Original entry on oeis.org

9, 21, 25, 33, 49, 57, 65, 69, 77, 85, 93, 121, 129, 133, 141, 145, 161, 169, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265, 289, 301, 305, 309, 321, 329, 341, 361, 365, 377, 381, 393, 413, 417, 437, 445, 453, 469, 473, 481, 485, 489, 493, 497
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 14 2005

Keywords

Comments

Either a(n)=(4*i+1)*(4*j+1) or a(n)=(4*i+3)*(4*j+3); - Reinhard Zumkeller, Jun 15 2005
A107978 is a subsequence. - Reinhard Zumkeller, Jun 15 2005

Crossrefs

Programs

  • Magma
    IsSemiprime:= func; [s: n in [2..150] | IsSemiprime(s) where s is 4*n + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    Select[4Range[0, 150] + 1, PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Extensions

Corrected and extended by Reinhard Zumkeller, Jun 15 2005

A121387 Semiprimes p*q with p and q primes of the form 4k+1 (A002144).

Original entry on oeis.org

25, 65, 85, 145, 169, 185, 205, 221, 265, 289, 305, 365, 377, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 745, 785, 793, 841, 865, 901, 905, 949, 965, 985, 1037, 1073, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1345, 1369, 1385, 1405, 1417
Offset: 1

Views

Author

Alford Arnold, Jul 26 2006, corrected Jun 24 2007

Keywords

Comments

p and q can be the same. [Harvey P. Dale, Jan 15 2012]
The terms are semiprimes of the form 4k + 1, and comprise only a portion of all such semiprimes, see A108181. - Richard R. Forberg, Aug 27 2013

Examples

			65 = 5 * 13. Note that 5 mod 4 = 1 and 13 mod 4 = 1, so 65 is a term.
		

Crossrefs

Fifth row of A121388.
Union of A080109 and A131574.

Programs

  • Mathematica
    With[{prs=Select[Prime[Range[150]],Mod[#,4]==1&]},Take[Union[Times @@@ Tuples[prs,2]],60]] (* Harvey P. Dale, Jan 15 2012 *)

Extensions

Better definition from T. D. Noe, Sep 25 2007

A176258 Numbers of the form 4k+1 with greatest prime divisor of the form 4m-1.

Original entry on oeis.org

9, 21, 33, 49, 57, 69, 77, 81, 93, 105, 121, 129, 133, 141, 161, 165, 177, 189, 201, 209, 213, 217, 237, 245, 249, 253, 285, 297, 301, 309, 321, 329, 341, 345, 361, 381, 385, 393, 413, 417, 437, 441, 453, 465, 469, 473, 489, 497, 501, 513, 517, 525, 529, 537, 553, 573
Offset: 1

Views

Author

Vladimir Shevelev, Apr 13 2010

Keywords

Comments

All terms of A107978 are in the sequence.

Crossrefs

Programs

  • Mathematica
    Select[4 Range@ 150 + 1, Mod[#, 4] == 3 &[FactorInteger[#][[-1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    isok(n) = (n != 1) && ((n % 4) == 1) && ((vecmax(factor(n)[,1]) % 4) == 3); \\ Michel Marcus, Feb 07 2016

Extensions

Corrected and extended by Michel Marcus, Feb 07 2016

A121388 Table read by antidiagonals which classifies the proper odd numbers by form (i,j) where i and j are the number of prime factors of the form 4k-1 and 4k+1 respectively.

Original entry on oeis.org

3, 5, 7, 9, 13, 11, 15, 21, 17, 19, 25, 35, 33, 29, 23, 27, 65, 39, 49, 37, 31, 45, 63, 85, 51, 57, 41, 43, 75, 105, 99, 145, 55, 69, 53, 47, 125, 175, 117, 147, 169, 87, 77, 61, 59, 81, 325, 195, 153, 171, 185, 91, 93, 73, 67, 135, 189, 425, 255, 165, 207, 205, 95, 121, 89
Offset: 1

Views

Author

Alford Arnold, Jul 26 2006

Keywords

Examples

			Table begins:
Row(i,j)
1: (1,0) 3,7,11,19,23,31,43,47,59,67,71,79,83,103,... (A002145)
2: (0,1) 5,13,17,29,37,41,53,61,73,89,97,101,109,... (A002144)
3: (2,0) 9,21,33,49,57,69,77,93,121,129,133,141,... (A107978)
4: (1,1) 15,35,39,51,55,87,91,95,111,115,119,... (A080774)
5: (0,2) 25,65,85,145,169,185,205,221,265,289,... (A121387)
6: (3,0) 27,63,99,147,171,207,231,279,343,...
7: (2,1) 45,105,117,153,165,245,261,273,...
8: (1,2) 75,175,195,255,275,435,455,...
9: (0,3) 125,325,425,725,845,925,...
10:(4,0) 81,189,297,441,513,...
11:(3,1) 135,315,351,459,...
12:(2,2) 225,525,585,...
13:(1,3) 375,875,...
14:(0,4) 625,...
		

Crossrefs

Cf. A120027. Subsequences begin A002145 A002144 A107978 A080774 A121387.

Extensions

Edited, corrected and extended by Ray Chandler, Aug 08 2010
Showing 1-7 of 7 results.