A123167 Continued fraction for c=sqrt(2)*(exp(sqrt(2))+1)/(exp(sqrt(2))-1). a(2*n-1) = 8*n-6, a(2*n) = 4*n-1.
2, 3, 10, 7, 18, 11, 26, 15, 34, 19, 42, 23, 50, 27, 58, 31, 66, 35, 74, 39, 82, 43, 90, 47, 98, 51, 106, 55, 114, 59, 122, 63, 130, 67, 138, 71, 146, 75, 154, 79, 162, 83, 170, 87, 178, 91, 186, 95, 194, 99, 202, 103, 210, 107, 218, 111, 226, 115, 234, 119, 242, 123
Offset: 1
Examples
c = 2.3227261394604270...
References
- J. Borwein and D. Bailey, Mathematics by experiment, plausible reasoning in the 21st Century, A. K. Peters, p. 77
- J. Borwein and K. Devlin, The computer as crucible: an introduction to experimental mathematics, A. K. Peters 2009, p. 91.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Cf. A123168.
Programs
-
GAP
a := [2,3,10,7];; for n in [5..10^3] do a[n] := 2*a[n-2] - a[n-4]; od; a; # Muniru A Asiru, Jan 28 2018
-
Magma
[(2*n-1)*2^(n mod 2): n in [1..50]]; // G. C. Greubel, Jan 27 2018
-
Maple
A123167 := proc(n) if type(n,'even') then 2*n-1 ; else 4*n-2 ; end if; end proc: # R. J. Mathar, Jul 25 2013
-
Mathematica
a[ n_] := (2 n - 1) 2^Mod[n, 2]; (* Michael Somos, Apr 25 2015 *)
-
PARI
{a(n) = (2*n - 1) * 2^(n%2)}; \\ Michael Somos, Feb 04 2012
Formula
a(n) = - A123168(2 - n) for all n in Z unless n = 1. - Michael Somos, Feb 24 2012
From Colin Barker, Feb 08 2012: (Start)
Empirical g.f.: x*(2+3*x+6*x^2+x^3)/(1-2*x^2+x^4).
Empirical a(n) = 2*a(n-2) - a(n-4). (End)
Comments