A123684 Alternate A016777(n) with A000027(n).
1, 1, 4, 2, 7, 3, 10, 4, 13, 5, 16, 6, 19, 7, 22, 8, 25, 9, 28, 10, 31, 11, 34, 12, 37, 13, 40, 14, 43, 15, 46, 16, 49, 17, 52, 18, 55, 19, 58, 20, 61, 21, 64, 22, 67, 23, 70, 24, 73, 25, 76, 26, 79, 27, 82, 28, 85, 29, 88, 30, 91, 31, 94, 32, 97, 33, 100, 34, 103, 35, 106, 36
Offset: 1
Examples
The natural numbers begin 1, 2, 3, ... (A000027), the sequence 3*n + 1 begins 1, 4, 7, 10, ... (A016777), therefore A123684 begins 1, 1, 4, 2, 7, 3, 10, ... 1/1 = 1, (1+1)/2 = 1, (1+1+4)/3 = 2, (1+1+4+2)/4 = 2, ... - _Philippe Deléham_, Nov 20 2013
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
- David Bařina, Convergence verification of the Collatz problem
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a123684 n = a123684_list !! (n-1) a123684_list = concat $ transpose [a016777_list, a000027_list] -- Reinhard Zumkeller, Apr 29 2013
-
Magma
&cat[ [ 3*n-2, n ]: n in [1..36] ]; // Klaus Brockhaus, May 12 2007
-
Magma
/* From the fourteenth formula: */ [&+[1+k*(-1)^k: k in [0..n]]: n in [0..80]]; // Bruno Berselli, Jul 16 2013
-
Maple
A123684:=n->n-1/4-(1/2*n-1/4)*(-1)^n: seq(A123684(n), n=1..70); # Wesley Ivan Hurt, Jul 26 2014
-
Mathematica
CoefficientList[Series[(1 +x +2*x^2)/((1-x)^2*(1+x)^2), {x,0,70}], x] (* Wesley Ivan Hurt, Jul 26 2014 *) LinearRecurrence[{0,2,0,-1},{1,1,4,2},80] (* Harvey P. Dale, Apr 14 2025 *)
-
PARI
print(vector(72, n, if(n%2==0, n/2, (3*n-1)/2))) \\ Klaus Brockhaus, May 12 2007
-
PARI
print(vector(72, n, n-1/4-(1/2*n-1/4)*(-1)^n)); \\ Klaus Brockhaus, May 12 2007
-
SageMath
[(n + (2*n-1)*(n%2))//2 for n in range(1,71)] # G. C. Greubel, Mar 15 2024
Formula
From Klaus Brockhaus, May 12 2007: (Start)
G.f.: x*(1+x+2*x^2)/((1-x)^2*(1+x)^2).
a(n) = (1/4)*(4*n - 1 - (2*n - 1)*(-1)^n).
a(2n-1) = A016777(n-1) = 3(n-1) + 1.
a(2n) = A000027(n) = n.
a(n) = A071045(n-1) + 1.
a(2*n+1) + a(2*n+2) = A016825(n). - Paul Curtz, Mar 09 2011
a(n)= 2*a(n-2) - a(n-4). - Paul Curtz, Mar 09 2011
From Jaroslav Krizek, Mar 22 2011 (Start):
a(n) = n + a(n-1) for odd n; a(n) = n - A064455(n-1) for even n.
a(n) = A225126(n) for n > 1. - Reinhard Zumkeller, Apr 29 2013
a(n) = Sum_{k=1..n} (1 + (k-1)*(-1)^(k-1)). - Bruno Berselli, Jul 16 2013
a(n) = n + floor(n/2) for odd n; a(n) = n/2 for even n. - Reinhard Muehlfeld, Jul 25 2014
Extensions
More terms from Klaus Brockhaus, May 12 2007
Comments