A124121
Primes q which are the lesser of a double Wieferich prime pair. (List of known values of q in increasing order, without multiplicity.)
Original entry on oeis.org
2, 3, 5, 83, 911, 2903
Offset: 1
-
/* The following (highly unoptimized) code misses the value q=5 (corresponding to a very large value of p) */
default(primelimit,1010000); forprime(q=1, default(primelimit), forprime(p=q+1, default(primelimit), Mod(p, q^2)^(q-1)-1 & next; Mod(q, p^2)^(p-1)-1 || print1( q", ") || break)) \\ M. F. Hasler, Oct 08 2011
A244550
a(n) = first odd Wieferich prime to base a(n-1) for n > 1, with a(1) = 2.
Original entry on oeis.org
2, 1093, 5, 20771, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71
Offset: 1
-
[2, 1093, 5, 20771] cat &cat [[3, 11, 71]^^30]; // Wesley Ivan Hurt, Jun 30 2016
-
2,1093,5,20771,seq(op([3, 11, 71]), n=5..50); # Wesley Ivan Hurt, Jun 30 2016
-
Join[{2, 1093, 5, 20771},LinearRecurrence[{0, 0, 1},{3, 11, 71},66]] (* Ray Chandler, Aug 25 2015 *)
-
i=0; a=2; print1(a, ", "); while(i<100, forprime(p=2, 10^6, if(Mod(a, p^2)^(p-1)==1 && p%2!=0, print1(p, ", "); i++; a=p; break({n=1}))))
A266829
Primes p such that a prime q < p exists with p^(q-1) == 1 (mod q^2) and q^(p-1) == 1 (mod p^2), i.e., primes that are the larger member of a double Wieferich prime pair.
Original entry on oeis.org
1093, 4871, 18787, 318917, 1006003, 1645333507
Offset: 1
-
fQ[p_] := Block[{q = 2}, While[q < p && (PowerMod[p, q - 1, q^2] != 1 || PowerMod[q, p - 1, p^2] != 1), q = NextPrime@ q]; If[q < p, True, False]]; p = 3; lst = {}; While[p < 1000000, If[fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jan 04 2016 *)
-
forprime(p=3, , forprime(q=2, p-1, if(Mod(p, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1, print1(p, ", "); break({1}))))
A196511
Primes q for which there are primes b < c < p such that b^p == c^p == 1 (mod q^2).
Original entry on oeis.org
555383, 1767407, 2103107, 2452757, 7400567, 12836987, 14668163, 15404867, 16238303, 19572647, 22796069, 25003799, 26978663, 27370727
Offset: 1
A196733
Primes q = 2*p+1 for which there are primes b < c < p such that b^p == c^p == 1 (mod q^2).
Original entry on oeis.org
555383, 1767407, 2103107, 7400567, 12836987, 14668163, 15404867, 16238303, 19572647, 25003799, 26978663, 27370727, 35182919, 36180527, 38553023, 39714083, 52503587, 53061143, 53735699, 55072427, 63302159, 70728839, 77199743, 77401679, 86334299, 97298759, 97375319
Offset: 1
- D. J. Broadhurst, Table of n, a(n) for n = 1..51
- D. J. Broadhurst et al., Re: Square factors of b^p-1 on yahoo group "primenumbers", Sept.-Oct. 2011
- David Broadhurst and others, Square factors of b^p-1, digest of 81 messages in primenumbers Yahoo group, Sep 22 - Nov 29, 2011.
- Michael Mossinghoff, Wieferich Prime Pairs, Barker Sequences, and Circulant Hadamard Matrices, as of Feb 12 2009.
A253683
Primes p in increasing order with p > A253684(n) > A253685(n) such that (p, A253684(n), A253685(n)) forms a Wieferich triple.
Original entry on oeis.org
71, 863, 1093, 2281, 3511, 13691, 20771, 54787, 950507, 1843757, 3188089
Offset: 1
-
forprime(p=1, , forprime(q=1, p, forprime(r=1, q, if((Mod(p, q^2)^(q-1)==1 && Mod(q, r^2)^(r-1)==1 && Mod(r, p^2)^(p-1)==1) || (Mod(p, r^2)^(r-1)==1 && Mod(r, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1), print1(p, ", ")))))
A271100
Triangular array read by rows: T(n, k) = k-th largest member of lexicographically earliest Wieferich n-tuple that contains no duplicate members, read by rows, or T(n, k) = 0 if no Wieferich n-tuple exists.
Original entry on oeis.org
0, 1093, 2, 71, 11, 3, 3511, 19, 13, 2, 359, 331, 71, 11, 3, 359, 331, 307, 71, 11, 3, 359, 331, 307, 71, 19, 11, 3, 863, 359, 331, 71, 23, 13, 11, 3, 863, 359, 331, 307, 71, 19, 13, 11, 3, 863, 467, 359, 331, 307, 71, 19, 13, 11, 3
Offset: 1
For n = 1: There is no Wieferich singleton (1-tuple), because no prime p satisfies the congruence p^(p-1) == 1 (mod p^2), so T(1, 1) = 0.
For n = 4: The primes 3511, 19, 13, 2 satisfy the congruences 3511^(19-1) == 1 (mod 19^2), 19^(13-1) == 1 (mod 13^2), 13^(2-1) == 1 (mod 2^2) and 2^(3511-1) == 1 (mod 3511^2) and thus form a "Wieferich quadruple". Since this is the lexicographically earliest such set of primes, T(4, 1..4) = 3511, 19, 13, 2.
Triangle starts:
n=1: 0;
n=2: 1093, 2;
n=3: 71, 11, 3;
n=4: 3511, 19, 13, 2;
n=5: 359, 331, 71, 11, 3;
n=6: 359, 331, 307, 71, 11, 3;
n=7: 359, 331, 307, 71, 19, 11, 3;
n=8: 863, 359, 331, 71, 23, 13, 11, 3;
n=9: 863, 359, 331, 307, 71, 19, 13, 11, 3;
n=10: 863, 467, 359, 331, 307, 71, 19, 13, 11, 3;
....
-
ulimupto(u,{llim=2}) = {my(l=List());
forprime(i=nextprime(llim+1),u,if(Mod(llim,i^2)^(i-1)==1,listput(l,i)));l} \\ David A. Corneth, May 14 2016
\\tests if a tuple is a valid Wieferich n-tuple.
-
istuple(v) = {if(#Set(v)==#v,return(0));for(j=0,(#v-1)!-1, w=vector(#v,k,v[numtoperm(#v,j)[k]]); if(sum(i=2,#w,Mod(w[i-1],w[i]^2)^(w[i]-1)==1)+(Mod(w[1],w[#w])^(w[#w]-1)==1)==#w,return(1)));0} \\ David A. Corneth, May 15 2016
-
wief = DiGraph([prime_range(3600), lambda p, q: power_mod(p, q-1, q^2)==1])
sc = [[0]] + [sorted(c[1:], reverse=1) for c in wief.all_simple_cycles()]
tbl = [sorted(filter(lambda c: len(c)==n, sc))[0] for n in range(1, len(sc[-1]))]
for t in tbl: print('n=%d:'% len(t), ', '.join("%s"%i for i in t)) # Bruce Leenstra, May 18 2016
A253684
Primes q with A253683(n) > q > A253685(n) such that (A253683(n), q, A253685(n)) forms a Wieferich triple.
Original entry on oeis.org
11, 23, 5, 1667, 73, 821, 18043, 2393, 20771, 2251, 1006003
Offset: 1
-
forprime(p=1, , forprime(q=1, p, forprime(r=1, q, if((Mod(p, q^2)^(q-1)==1 && Mod(q, r^2)^(r-1)==1 && Mod(r, p^2)^(p-1)==1) || (Mod(p, r^2)^(r-1)==1 && Mod(r, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1), print1(q, ", ")))))
A253685
Primes r with A253683(n) > A253684(n) > r such that (A253683(n), A253684(n), r) is a Wieferich triple.
Original entry on oeis.org
3, 13, 2, 1657, 2, 83, 5, 431, 5, 199, 3
Offset: 1
-
forprime(p=1, , forprime(q=1, p, forprime(r=1, q, if((Mod(p, q^2)^(q-1)==1 && Mod(q, r^2)^(r-1)==1 && Mod(r, p^2)^(p-1)==1) || (Mod(p, r^2)^(r-1)==1 && Mod(r, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1), print1(r, ", ")))))
Showing 1-10 of 12 results.
Comments