A007510
Single (or isolated or non-twin) primes: Primes p such that neither p-2 nor p+2 is prime.
Original entry on oeis.org
2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563
Offset: 1
All primes congruent to 7 mod 15 are members, except for 7. All terms of A102723 are members, except for 5. - _Jonathan Sondow_, Oct 27 2017
- Richard L. Francis, "Isolated Primes", J. Rec. Math., 11 (1978), 17-22.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Jens Kruse Andersen, Paul Underwood and Pierre Cami, Chen prime with 70301 digits, digest of 3 messages in primeform Yahoo group, Oct 7, 2005.
- Jens Kruse Andersen, Yahoo Primeform Group Message 6481 dd. Oct 7, 2005, reconstruction in html.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Wikipedia, Isolated prime
-
import Data.List (elemIndices)
a007510 n = a007510_list !! (n-1)
a007510_list = map (+ 1) $ elemIndices (0, 1, 0) $
zip3 (drop 2 a010051_list) a010051_list (0 : 0 : a010051_list)
-- Reinhard Zumkeller, Sep 16 2014
-
[p: p in PrimesUpTo(1000)| not IsPrime(p-2) and not IsPrime(p+2)]; // Vincenzo Librandi, Jun 20 2014
-
with(numtheory): for i from 1 to 150 do p:=ithprime(i): if(not isprime(p+2) and not isprime(p-2)) then printf("%d, ",p) fi od: # Pab Ter
isA007510 := proc(n) isprime(n) and not isprime(n+2) and not isprime(n-2) ; simplify(%) ; end proc:
A007510 := proc(n) if n = 1 then 2; else for a from procname(n-1)+1 do if isA007510(a) then return a; end if; end do; end if; end proc: # R. J. Mathar, Apr 26 2010
-
Transpose[Select[Partition[Prime[Range[100]], 3, 1], #[[2]] - #[[1]] != 2 && #[[3]] - #[[2]] != 2 &]][[2]] (* Harvey P. Dale, Mar 01 2001 *)
Select[Prime[Range[4,100]],!PrimeQ[ #-2]&&!PrimeQ[ #+2]&] (* Zak Seidov, May 07 2007 *)
Select[Prime[Range[150]],NoneTrue[#+{2,-2},PrimeQ]&] (* Harvey P. Dale, Dec 26 2022 *)
-
forprime(x=2,1000,if(!isprime(x-2)&&!isprime(x+2),print(x))) \\ Zak Seidov, Mar 23 2009
-
list(lim)=my(v=List([2]),p=3,q=5); forprime(r=7,lim, if(q-p>2 && r-q>2, listput(v,q)); p=q; q=r); p=precprime(lim); if(p<=lim && p-precprime(p-2)>2 && nextprime(p+2)-p>2, listput(v,p)); Vec(v) \\ Charles R Greathouse IV, Aug 21 2017
-
from sympy import nextprime
def aupto(limit):
n, p, q = 1, 2, 3
alst, non_twins, twins = [], [2], [3]
while True:
p, q = q, nextprime(q)
if q - p == 2:
if p != twins[-1]: twins.append(p)
twins.append(q)
else:
if p != twins[-1]: non_twins.append(p)
if q > limit: return non_twins
print(aupto(563)) # Michael S. Branicky, Feb 23 2021
-
10 'primes using counters 20 N=3:print "2 ";:print "3 ";:C=2 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then 55 55 Q=N+2:R=N-2: if Q<>prmdiv(Q) and N=prmdiv(N) and R<>prmdiv(R) then print Q;N;R;"-";:stop:else N=N+2:goto 30 60 A=A+2 70 if A<=sqrt(N) then 40:stop 81 C=C+1 100 N=N+2:goto 30 ' Enoch Haga, Oct 08 2007
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 11 2005
A083370
Primes satisfying f(2p)=p when f(1)=5 (see comment).
Original entry on oeis.org
23, 31, 47, 53, 61, 73, 83, 89, 113, 131, 139, 151, 157, 167, 173, 181, 199, 211, 233, 241, 251, 257, 263, 271, 283, 293, 317, 331, 337, 353, 359, 367, 373, 383, 389, 401, 409, 421, 433, 443, 449, 467, 479, 491
Offset: 1
-
A006530 := proc(n) if n = 1 then RETURN(1) ; else RETURN(op(1,op(-1,op(2,ifactors(n))))) ; fi ; end: f := proc(n) option remember ; if n = 1 then RETURN(5) ; else A006530(add(f(i),i=1..n-1)) ; fi ; end: isA083370 := proc(p) if isprime(p) then if p = f(2*p) then true ; else false ; fi ; else false ; fi ; end: n := 1 : i := 1 : while n <= 1000 do p := ithprime(i) ; if isA083370(p) then printf("%d %d ",n,p) ; n := n+ 1 ; fi ; i := i+1 ; end: # R. J. Mathar, Feb 08 2007
-
f[n_] := f[n] = If[n==1, 5, FactorInteger[Total[f /@ Range[n-1]]][[-1, 1]]];
Reap[For[p=2, p<500, p = NextPrime[p], If[f[2p] == p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2019 *)
A124589
Primes p such that q-p <= 4, where q is the next prime after p.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 29, 37, 41, 43, 59, 67, 71, 79, 97, 101, 103, 107, 109, 127, 137, 149, 163, 179, 191, 193, 197, 223, 227, 229, 239, 269, 277, 281, 307, 311, 313, 347, 349, 379, 397, 419, 431, 439, 457, 461, 463, 487, 499, 521, 569, 599, 613, 617, 641, 643, 659
Offset: 1
-
Transpose[Select[Partition[Prime[Range[200]],2,1],Last[#]-First[#]<5&]][[1]] (* Harvey P. Dale, Apr 22 2013 *)
-
is(n)=isprime(n) && (isprime(n+2) || isprime(n+4) || n==2) \\ Charles R Greathouse IV, Jun 01 2016
A134099
Odd nonprimes np such that np-2 is a prime number but np+2 is not.
Original entry on oeis.org
25, 33, 49, 55, 63, 75, 85, 91, 115, 133, 141, 153, 159, 169, 175, 183, 201, 213, 235, 243, 253, 259, 265, 273, 285, 295, 319, 333, 339, 355, 361, 369, 375, 385, 391, 403, 411, 423, 435, 445, 451, 469, 481, 493, 505, 511, 525, 543, 549, 559, 565, 573, 579
Offset: 1
a(1) = 25 because it is an odd nonprime preceded by the prime 23 and followed by the odd nonprime 27.
-
Select[Range[5,1000,2], !PrimeQ[#] && PrimeQ[#-2] && !PrimeQ[#+2]&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
2#-1&/@(Mean/@SequencePosition[Table[If[PrimeQ[n],1,0],{n,1,601,2}],{1,0,0}]) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 31 2020 *)
Select[Partition[Range[600],5,2],PrimeQ[#[[1]]]&&AllTrue[{#[[3]],#[[5]]},CompositeQ]&][[;;,3]] (* Harvey P. Dale, May 14 2023 *)
-
10 'primes using counters 20 N=3:print "2 ";:print "3 ";:C=2 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then 55 55 Q=N+2:R=N-2: if Q<>prmdiv(Q) and N<>prmdiv(N) and R=prmdiv(R) then print Q;N;R;"-";:stop:else N=N+2:goto 30 60 A=A+2 70 if A<=sqrt(N) then 40:stop 81 C=C+1 100 N=N+2:goto 30
Definition corrected by
Jens Voß, Mar 12 2014
A134100
Primes p > 3 such that neither p-2 nor p-4 are prime.
Original entry on oeis.org
29, 37, 53, 59, 67, 79, 89, 97, 127, 137, 149, 157, 163, 173, 179, 191, 211, 223, 239, 251, 257, 263, 269, 277, 293, 307, 331, 337, 347, 359, 367, 373, 379, 389, 397, 409, 419, 431, 439, 449, 457, 479, 487, 499, 509, 521, 541, 547, 557, 563, 569, 577, 587
Offset: 1
29 is a term because 29 follows the odd nonprime 27 which in turn follows the odd nonprime 25.
-
Select[Range[5,1000,2],PrimeQ[#]&&!PrimeQ[#-2]&&!PrimeQ[#-4]&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
-
forprime(p=5,600,if(!isprime(p-2) && !isprime(p-4), print1(p,", "))); \\ Joerg Arndt, Oct 27 2021
-
list(lim)=my(v=List(),p=23); forprime(q=29,lim, if(q-p>4, listput(v,q)); p=q); Vec(v) \\ Charles R Greathouse IV, Oct 27 2021
A134101
Odd nonprimes such that the prior odd number is not a prime but the next odd number is a prime.
Original entry on oeis.org
27, 35, 51, 57, 65, 77, 87, 95, 125, 135, 147, 155, 161, 171, 177, 189, 209, 221, 237, 249, 255, 261, 267, 275, 291, 305, 329, 335, 345, 357, 365, 371, 377, 387, 395, 407, 417, 429, 437, 447, 455, 477, 485, 497, 507, 519, 539, 545, 555, 561, 567, 575, 585
Offset: 1
a(1)=27 because this odd nonprime is followed by the prime 29 but preceded by the odd nonprime 25.
-
Select[Range[5,1000,2],!PrimeQ[#]&&!PrimeQ[#-2]&&PrimeQ[#+2]&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
Transpose[Select[Partition[Range[1,601,2],3,1],Boole[PrimeQ[#]]=={0,0,1}&]] [[2]] (* or *) 2#+1&/@Flatten[Position[Partition[Boole[PrimeQ[ Range[ 1,601,2]]],3,1],?(#=={0,0,1}&)]] (* _Harvey P. Dale, Jan 04 2015 *)
-
10 'primes using counters 20 N=3:print "2 ";:print "3 ";:C=2 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then 55 55 Q=N-2:R=N+2: if Q<>prmdiv(Q) and N<>prmdiv(N) and R=prmdiv(R) then print Q;N;R;"-";:stop:else N=N+2:goto 30 60 A=A+2 70 if A<=sqrt(N) then 40:stop 81 C=C+1 100 N=N+2:goto 30
A258578
Primes p such that difference between p and next prime after p is multiple of 6.
Original entry on oeis.org
23, 31, 47, 53, 61, 73, 83, 131, 151, 157, 167, 173, 199, 211, 233, 251, 257, 263, 271, 331, 353, 367, 373, 383, 433, 443, 467, 503, 509, 523, 541, 557, 563, 571, 587, 593, 601, 607, 619, 647, 653, 661, 677, 727, 733, 751, 797, 941, 947, 971, 977, 991, 997
Offset: 1
a(1)=23 because next prime after 23 is 29=23+6,
a(13)=199 because next prime after 199 is 211=199+12,
a(30)=523 because next prime after 523 is 541=523+18,
a(90)=1669 because next term after 1669 is 1693=1669+24,
a(199)=4297 because next prime after 4297 is 4327=4297+30.
-
Select[Partition[Prime[Range[200]],2,1],Mod[#[[2]]-#[[1]],6]==0&][[All,1]] (* Harvey P. Dale, Jun 20 2019 *)
-
lista(nn) = forprime(p=2, nn, if (!((nextprime(p+1) - p) % 6), print1(p, ", "));); \\ Michel Marcus, Jun 04 2015
-
v=List();p=2; forprime(q=3,1e4,if((q-p)%6==0,listput(v,p));p=q); v \\ Charles R Greathouse IV, Jun 04 2015
A382766
Odd primes p such that p + 4, p + 6 and p + 8 are composite.
Original entry on oeis.org
113, 137, 139, 179, 181, 197, 199, 211, 239, 241, 281, 283, 293, 317, 337, 409, 419, 421, 467, 509, 521, 523, 547, 577, 617, 619, 631, 659, 661, 691, 709, 773, 787, 797, 809, 811, 827, 829, 839, 863, 887, 919, 953, 997, 1019, 1021, 1039, 1049, 1051, 1069
Offset: 1
-
P:= select(isprime,{seq(i,i=3..10008,2)}):
R:= P minus (P -~ 4) minus (P -~ 6) minus (P -~ 8):
sort(convert(R,list)); # Robert Israel, Apr 28 2025
-
Select[Table[
Module[{p = 2, q},
While[True, q = 2 n - p; If[PrimeQ[p] && PrimeQ[q], Break[]];
p = NextPrime[p]]; If[p == 11, q, Nothing]], {n, 2, 1000}], # =!=
Nothing &]
-
isok(p) = (p%2) && isprime(p) && !isprime(p+4) && !isprime(p+6) && !isprime(p+8); \\ Michel Marcus, Apr 07 2025
A297709
Table read by antidiagonals: Let b be the number of digits in the binary expansion of n. Then T(n,k) is the k-th odd prime p such that the binary digits of n match the primality of the b consecutive odd numbers beginning with p (or 0 if no such k-th prime exists).
Original entry on oeis.org
3, 5, 7, 7, 13, 3, 11, 19, 5, 23, 13, 23, 11, 31, 7, 17, 31, 17, 47, 13, 5, 19, 37, 29, 53, 19, 11, 3, 23, 43, 41, 61, 37, 17, 0, 89, 29, 47, 59, 73, 43, 29, 0, 113, 23, 31, 53, 71, 83, 67, 41, 0, 139, 31, 19, 37, 61, 101, 89, 79, 59, 0, 181, 47, 43, 7, 41, 67
Offset: 1
13 = 1101_2, so row n=13 lists the odd primes p such that the four consecutive odd numbers p, p+2, p+4, and p+6 are prime, prime, composite, and prime, respectively; these are the terms of A022004.
14 = 1110_2, so row n=14 lists the odd primes p such that p, p+2, p+4, and p+6 are prime, prime, prime, and composite, respectively; since there is only one such prime (namely, 3), there is no such 2nd, 3rd, 4th, etc. prime, so the terms in row 14 are {3, 0, 0, 0, ...}.
15 = 1111_2, so row n=15 would list the odd primes p such that p, p+2, p+4, and p+6 are all prime, but since no such prime exists, every term in row 15 is 0.
Table begins:
n in base| k | OEIS
---------+----------------------------------------+sequence
10 2 | 1 2 3 4 5 6 7 8 | number
=========+========================================+========
1 1 | 3 5 7 11 13 17 19 23 | A065091
2 10 | 7 13 19 23 31 37 43 47 | A049591
3 11 | 3 5 11 17 29 41 59 71 | A001359
4 100 | 23 31 47 53 61 73 83 89 | A124582
5 101 | 7 13 19 37 43 67 79 97 | A029710
6 110 | 5 11 17 29 41 59 71 101 | A001359*
7 111 | 3 0 0 0 0 0 0 0 |
8 1000 | 89 113 139 181 199 211 241 283 | A083371
9 1001 | 23 31 47 53 61 73 83 131 | A031924
10 1010 | 19 43 79 109 127 163 229 313 |
11 1011 | 7 13 37 67 97 103 193 223 | A022005
12 1100 | 29 59 71 137 149 179 197 239 | A210360*
13 1101 | 5 11 17 41 101 107 191 227 | A022004
14 1110 | 3 0 0 0 0 0 0 0 |
15 1111 | 0 0 0 0 0 0 0 0 |
16 10000 | 113 139 181 199 211 241 283 293 | A124584
17 10001 | 89 359 389 401 449 479 491 683 | A031926
18 10010 | 31 47 61 73 83 151 157 167 |
19 10011 | 23 53 131 173 233 263 563 593 | A049438
20 10100 | 19 43 79 109 127 163 229 313 |
21 10101 | 0 0 0 0 0 0 0 0 |
22 10110 | 7 13 37 67 97 103 193 223 | A022005
23 10111 | 0 0 0 0 0 0 0 0 |
24 11000 | 137 179 197 239 281 419 521 617 |
25 11001 | 29 59 71 149 269 431 569 599 | A049437*
26 11010 | 17 41 107 227 311 347 461 641 |
27 11011 | 5 11 101 191 821 1481 1871 2081 | A007530
28 11100 | 0 0 0 0 0 0 0 0 |
29 11101 | 3 0 0 0 0 0 0 0 |
30 11110 | 0 0 0 0 0 0 0 0 |
31 11111 | 0 0 0 0 0 0 0 0 |
*other than the referenced sequence's initial term 3
.
Alternative version of table:
.
n in base|primal-| k | OEIS
---------+ ity +------------------------------+ seq.
10 2 |pattern| 1 2 3 4 5 6 | number
=========+=======+==============================+========
1 1 | p | 3 5 7 11 13 17 | A065091
2 10 | pc | 7 13 19 23 31 37 | A049591
3 11 | pp | 3 5 11 17 29 41 | A001359
4 100 | pcc | 23 31 47 53 61 73 | A124582
5 101 | pcp | 7 13 19 37 43 67 | A029710
6 110 | ppc | 5 11 17 29 41 59 | A001359*
7 111 | ppp | 3 0 0 0 0 0 |
8 1000 | pccc | 89 113 139 181 199 211 | A083371
9 1001 | pccp | 23 31 47 53 61 73 | A031924
10 1010 | pcpc | 19 43 79 109 127 163 |
11 1011 | pcpp | 7 13 37 67 97 103 | A022005
12 1100 | ppcc | 29 59 71 137 149 179 | A210360*
13 1101 | ppcp | 5 11 17 41 101 107 | A022004
14 1110 | pppc | 3 0 0 0 0 0 |
15 1111 | pppp | 0 0 0 0 0 0 |
16 10000 | pcccc | 113 139 181 199 211 241 | A124584
17 10001 | pcccp | 89 359 389 401 449 479 | A031926
18 10010 | pccpc | 31 47 61 73 83 151 |
19 10011 | pccpp | 23 53 131 173 233 263 | A049438
20 10100 | pcpcc | 19 43 79 109 127 163 |
21 10101 | pcpcp | 0 0 0 0 0 0 |
22 10110 | pcppc | 7 13 37 67 97 103 | A022005
23 10111 | pcppp | 0 0 0 0 0 0 |
24 11000 | ppccc | 137 179 197 239 281 419 |
25 11001 | ppccp | 29 59 71 149 269 431 | A049437*
26 11010 | ppcpc | 17 41 107 227 311 347 |
27 11011 | ppcpp | 5 11 101 191 821 1481 | A007530
28 11100 | pppcc | 0 0 0 0 0 0 |
29 11101 | pppcp | 3 0 0 0 0 0 |
30 11110 | ppppc | 0 0 0 0 0 0 |
31 11111 | ppppp | 0 0 0 0 0 0 |
.
*other than the referenced sequence's initial term 3
Cf.
A001359,
A007530,
A022004,
A022005,
A029710,
A031924,
A031926,
A049437,
A049438,
A049591,
A065091,
A124582,
A083371,
A124584,
A210360.
Showing 1-9 of 9 results.
Comments