cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 98 results. Next

A117244 Single (or isolated or non-twin) primes (A007510) that are not Chen primes (A109611).

Original entry on oeis.org

79, 97, 163, 173, 223, 277, 331, 367, 373, 383, 397, 439, 457, 547, 593, 607, 613, 673, 691, 709, 727, 733, 739, 757, 773, 853, 907, 929, 967, 997, 1013, 1069, 1087, 1103, 1123, 1129, 1171, 1181, 1213, 1223, 1237, 1249, 1307, 1373, 1423, 1433, 1447, 1493
Offset: 1

Views

Author

Jani Melik, Apr 22 2006

Keywords

Examples

			79 is single prime, but not Chen prime, since 79 -2 = 77 = 7*11 is composite, and 79 + 2 = 81 = 3^4 is neither prime nor semiprime.
		

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc: isA109611 := proc(n) if isprime(n) then isprime(n+2) or isA001358(n+2) ; else false; end if; end proc: isA007510 := proc(n) if isprime(n) then not isprime(n-2) and not isprime(n+2) ; else false; end if ; end proc: isA117244 := proc(n) isA007510(n) and not isA109611(n) ; end proc: for n from 1 to 4000 do if isA117244(n) then printf("%d,",n) ; fi; end do ; # R. J. Mathar, Dec 09 2009
  • Mathematica
    Select[Range[1500], PrimeQ[#] && !PrimeQ[#-2] && PrimeOmega[#+2] > 2 &] (* Amiram Eldar, Oct 19 2021 *)
  • PARI
    isok(p) = isprime(p) && !isprime(p-2) && !isprime(p+2) && (bigomega(p+2) > 2); \\ Michel Marcus, Oct 19 2021

Extensions

Terms beyond 397 from R. J. Mathar, Dec 09 2009
Offset corrected by Amiram Eldar, Oct 19 2021

A153478 Sum of first n isolated (or single) primes A007510.

Original entry on oeis.org

2, 25, 62, 109, 162, 229, 308, 391, 480, 577, 690, 817, 948, 1105, 1268, 1435, 1608, 1819, 2042, 2275, 2526, 2783, 3046, 3323, 3616, 3923, 4240, 4571, 4908, 5261, 5620, 5987, 6360, 6739, 7122, 7511, 7908, 8309, 8718, 9157, 9600
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Prime[Range[100]],!PrimeQ[#-2]&&!PrimeQ[#+2]&]]  (* Harvey P. Dale, Feb 08 2011 *)

A162308 Number of twin primes A001097 smaller than the non-twin prime A007510(n).

Original entry on oeis.org

0, 7, 9, 11, 11, 13, 15, 15, 15, 15, 19, 19, 19, 23, 23, 23, 23, 29, 29, 31, 33, 33, 33, 35, 37, 37, 39, 39, 39, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 45, 45, 45, 45, 47, 47, 47, 47, 47, 47, 47, 49, 49, 49, 49, 51, 51, 51, 53, 53, 55, 57, 57, 59, 59, 59, 59, 59, 59, 59
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 01 2009

Keywords

Examples

			a(2)=7 counts the numbers 3, 5, 7, 11, 13, 17, 19 below 23=A007510(2).
		

Crossrefs

Programs

  • Maple
    isA007510 := proc(n) RETURN(isprime(n) and not isprime(n-2) and not isprime(n+2)) ; end:
    isA001097 := proc(n) RETURN(isprime(n) and (isprime(n-2) or isprime(n+2)) ) ; end:
    A007510 := proc(n) local a; if n = 1 then 2; else for a from procname(n-1)+1 do if isA007510(a) then RETURN(a) ; fi; od: fi; end:
    A162308 := proc(n) local a,k; a := 0 ; for k from 3 to A007510(n)-1 do if isA001097(k) then a := a+1; fi; od; a; end:
    seq(A162308(n),n=1..120) ; # R. J. Mathar, Jul 02 2009

Extensions

Edited by R. J. Mathar, Jul 02 2009

A064110 Let s(n) = n-th single prime (cf. A007510). Sequence is defined by recurrence a(n+1) = s(a(n)), n = 0,1,2,..., a(0)=1.

Original entry on oeis.org

1, 2, 23, 263, 2917, 38639, 603311, 11093633, 236524303, 5782539281
Offset: 0

Views

Author

Lubomir Alexandrov, Sep 07 2001

Keywords

Comments

This is the "isolated prime Eratosthenes progression at base 1 (ipep(1))". The next ipep are: ipep(3) = 3, 37, 397, 4751, 64403, 1038629, 19661749,...; ipep(4) = 4, 47, 491, 5897, 81131, 1328167, 25467419,...; ipep(5) = 5, 53, 557, 6709, 93287, 1541191, 29778547,...; ...; ipep(22)= 22, 257, 2861, 37799, 589181, 10821757, 230452837,... ipep(24)= 24, 277, 3079, 40823, 640121, 11807167, 252480587,... and so on.
In the terminology of A007097 the name is "isolated_prime-th recurrence ..."

References

  • "Isolated Primes", by Richard L. Francis, J. Rec. Math., 11 (1978), 17-22.

Crossrefs

Extensions

a(9) from Sean A. Irvine, Jun 12 2023

A133076 Successive digits of isolated primes A007510(n).

Original entry on oeis.org

2, 2, 3, 3, 7, 4, 7, 5, 3, 6, 7, 7, 9, 8, 3, 8, 9, 9, 7, 1, 1, 3, 1, 2, 7, 1, 3, 1, 1, 5, 7, 1, 6, 3, 1, 6, 7, 1, 7, 3, 2, 1, 1, 2, 2, 3, 2, 3, 3, 2, 5, 1, 2, 5, 7, 2, 6, 3, 2, 7, 7, 2, 9, 3, 3, 0, 7, 3, 1, 7, 3, 3, 1, 3, 3, 7, 3, 5, 3, 3, 5, 9
Offset: 1

Views

Author

Omar E. Pol, Nov 10 2007

Keywords

Crossrefs

Programs

  • Mathematica
    With[{prs=Prime[Range[100]]},Flatten[IntegerDigits/@Complement[prs, Flatten[Select[Partition[prs,2,1],Last[#]-First[#]==2&]]]]] (* Harvey P. Dale, Sep 20 2011 *)

A167514 Index of prime(n) in A007510 or in A001097.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 2, 8, 9, 3, 10, 11, 4, 5, 12, 13, 6, 14, 15, 7, 8, 9, 10, 16, 17, 18, 19, 11, 12, 13, 20, 21, 22, 23, 14, 15, 16, 17, 24, 25, 26, 27, 28, 29, 18, 19, 30, 31, 20, 32, 33, 21, 22, 23, 34, 35, 24, 36, 37, 25, 26, 38, 39, 27, 28, 29, 40, 41, 30, 31, 32, 33, 34
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 05 2009

Keywords

Comments

Crossrefs

Formula

A007510(a(n))=n or A001097(a(n))=n.

Extensions

Definition corrected by R. J. Mathar, May 30 2010

A374591 Even numbers that can be written as the sum of two isolated primes (A007510).

Original entry on oeis.org

4, 46, 60, 70, 74, 76, 84, 90, 94, 100, 102, 104, 106, 112, 114, 116, 120, 126, 130, 132, 134, 136, 142, 144, 146, 150, 154, 156, 158, 160, 162, 164, 166, 168, 172, 174, 176, 178, 180, 184, 186, 190, 192, 194, 196, 198, 200, 202, 204, 206, 210, 214, 216, 220
Offset: 1

Views

Author

Marc Groz, Jul 12 2024

Keywords

Examples

			4 = 2 + 2 is a term, as 2 is the smallest isolated prime.
60 = 23 + 37 is the smallest term that is the sum of two distinct isolated primes.
		

Crossrefs

Cf. A007510.

Programs

  • Mathematica
    Lim=220;ip=Select[Prime[Range[Lim]], NoneTrue[#+{2, -2}, PrimeQ]&] ;ipp[a_]:={a,a};Select[Union[Total/@Join[ipp/@ip,Subsets[ip,{2}]]],EvenQ[#]&&#<=Lim&] (* James C. McMahon, Aug 10 2024 *)

A067774 Primes p such that p+2 is not a prime.

Original entry on oeis.org

2, 7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 67, 73, 79, 83, 89, 97, 103, 109, 113, 127, 131, 139, 151, 157, 163, 167, 173, 181, 193, 199, 211, 223, 229, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 313, 317, 331, 337, 349, 353, 359, 367, 373, 379, 383, 389
Offset: 1

Views

Author

Benoit Cloitre, Feb 06 2002

Keywords

Comments

Primes n such that n!*B(n+1) is an integer where B(k) are the Bernoulli numbers.
All primes except for the lower members of twin primes - i.e. remove 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, ... - Gerard Schildberger, Feb 13 2005

Crossrefs

Cf. A049591.
Complement of A001359 in A000040, A025584, A007510.

Programs

Formula

Except for a(1)=2, a(n+1)=A049591(n).
a(n) ~ n log n. - Charles R Greathouse IV, Jul 01 2013

Extensions

Better description from Vladeta Jovovic, Dec 14 2002

A167706 The single or isolated numbers. The union of single (or isolated or non-twin) primes and single (or isolated or average of twin prime pairs) nonprimes.

Original entry on oeis.org

2, 4, 6, 12, 18, 23, 30, 37, 42, 47, 53, 60, 67, 72, 79, 83, 89, 97, 102, 108, 113, 127, 131, 138, 150, 157, 163, 167, 173, 180, 192, 198, 211, 223, 228, 233, 240, 251, 257, 263, 270, 277, 282, 293, 307, 312, 317, 331, 337, 348, 353, 359, 367, 373, 379, 383, 389
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 10 2009, Nov 14 2009

Keywords

Comments

Equals A007510 U A014574.

Crossrefs

Programs

  • Mathematica
    With[{nn = 78}, {2}~Join~Union[Transpose[Select[Partition[Prime@ Range@ nn, 3, 1], And[#[[2]] - #[[1]] != 2, #[[3]] - #[[2]] != 2] &]][[2]], Map[Mean, Select[Partition[Prime@ Range@ nn, 2, 1], Differences@ # == {2} &]]]] (* Michael De Vlieger, Feb 22 2017, after Harvey P. Dale at A007510 and A014574 *)
  • PARI
    is(n)=if(n%6, (isprime(n) && !isprime(n-2) && !isprime(n+2)) || n==4, isprime(n-1) && isprime(n+1)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    lista(pmax) = {my(p1 = 2, p2 = 3); print1(2, ", "); forprime(p3 = 5, pmax, if(p2 == p1 + 2, print1(p1 + 1, ", ")); if(p2 != p1 + 2 && p2 != p3 - 2, print1(p2, ", ")); p1 = p2; p2 = p3);} \\ Amiram Eldar, May 17 2024

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Apr 29 2015

Extensions

Corrected (97 inserted) by R. J. Mathar, Nov 16 2009

A132231 Primes congruent to 7 (mod 30).

Original entry on oeis.org

7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Intersection of A030432 and A002476. - Ray Chandler, Apr 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017

Crossrefs

Programs

  • Haskell
    a132231 n = a132231_list !! (n-1)
    a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Magma
    [p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[30*Range[0,100]+7,PrimeQ] (* Harvey P. Dale, Feb 01 2012 *)
    Select[Prime[Range[1000]],MemberQ[{7},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    forstep(p=7,1999,30,isprime(p)&&print1(p",")) \\ M. F. Hasler, Nov 02 2013

Formula

a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012

Extensions

Extended by Ray Chandler, Apr 07 2009
Showing 1-10 of 98 results. Next