cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A033982 Integers n such that 2^n == 11 (mod n).

Original entry on oeis.org

1, 3, 262279, 143823239, 382114303, 1223853491, 381541784791, 556985326431, 6236258437049, 98828020264153
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

894157816841269897394424491194255510200782699 belongs to this sequence. [From Max Alekseyev]

Crossrefs

Programs

  • Mathematica
    m = 11; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Terms 1, 3 prepended by Max Alekseyev, May 18 2011
a(9), a(10) from Max Alekseyev, Jul 30 2011

A033983 Integers n such that 2^n == 15 (mod n).

Original entry on oeis.org

1, 13, 481, 44669, 1237231339, 1546675117, 62823773963, 284876771881, 1119485807557, 26598440989093
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^14.

Crossrefs

Programs

  • Mathematica
    m = 15; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

One more term from Joe K. Crump (joecr(AT)carolina.rr.com), Jun 20 2000
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Terms 1, 13 prepended by Max Alekseyev, May 18 2011
a(10) from Max Alekseyev, Dec 15 2013

A051447 Integers n such that 2^n == 9 (mod n).

Original entry on oeis.org

1, 7, 2228071, 16888457, 352978207, 1737848873, 77362855777, 567442642711
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

No other terms below 10^15. [Max Alekseyev, May 20 2012]

Crossrefs

Programs

  • Mathematica
    m = 9; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2008, at the suggestion of Don Reble
Terms 1, 7 prepended by Max Alekseyev, May 18 2011

A128122 Numbers m such that 2^m == 6 (mod m).

Original entry on oeis.org

1, 2, 10669, 6611474, 43070220513807782
Offset: 1

Views

Author

Alexander Adamchuk, Feb 15 2007

Keywords

Comments

No other terms below 10^17. - Max Alekseyev, Nov 18 2022
A large term: 862*(2^861-3)/281437921287063162726198552345362315020202285185118249390789 (203 digits). - Max Alekseyev, Sep 24 2016

Examples

			2 == 6 (mod 1), so 1 is a term;
4 == 6 (mod 2), so 2 is a term.
		

Crossrefs

Solutions to 2^m == k (mod m): A000079 (k=0),A187787 (k=1/2), A296369 (k=-1/2), A006521 (k=-1), A296370 (k=3/2), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), this sequence (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    m = 6; Join[Select[Range[m], Divisible[2^# - m, #] &],
    Select[Range[m + 1, 10^6], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 08 2018 *)

Extensions

1 and 2 added by N. J. A. Sloane, Apr 23 2007
a(5) from Max Alekseyev, Nov 18 2022

A014960 Integers n such that n divides 24^n - 1.

Original entry on oeis.org

1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*24^(k-1) (cf. A014942).
All n > 1 in the sequence are multiple of 23. - Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p|(24^n - 1), then n*p is a term. In particular, if n is a term and prime p|n, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759. - Max Alekseyev, Nov 16 2019

Crossrefs

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).

Programs

  • Mathematica
    s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
    Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)

Extensions

More terms from Robert G. Wilson v, Sep 13 2000
a(9)-a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019

A296369 Numbers m such that 2^m == -1/2 (mod m).

Original entry on oeis.org

1, 5, 65, 377, 1189, 1469, 25805, 58589, 134945, 137345, 170585, 272609, 285389, 420209, 538733, 592409, 618449, 680705, 778805, 1163065, 1520441, 1700945, 2099201, 2831009, 4020029, 4174169, 4516109, 5059889, 5215769
Offset: 1

Views

Author

Max Alekseyev, Dec 10 2017

Keywords

Comments

Equivalently, 2^(m+1) == -1 (mod m), or m divides 2^(m+1) + 1.
The sequence is infinite, see A055685.

Crossrefs

Solutions to 2^m == k (mod m): A296370 (k=3/2), A187787 (k=1/2), this sequence (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^5], Divisible[2^(# + 1) + 1, #] &] (* Robert Price, Oct 11 2018 *)
  • Python
    A296369_list = [n for n in range(1,10**6) if pow(2,n+1,n) == n-1] # Chai Wah Wu, Nov 04 2019

Formula

a(n) = A055685(n) - 1.

Extensions

Incorrect term 4285389 removed by Chai Wah Wu, Nov 04 2019

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A014959 Integers k such that k divides 22^k - 1.

Original entry on oeis.org

1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*22^(k-1) (cf. A014940).

Crossrefs

Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014960 (b=24).

Programs

  • Mathematica
    nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)

Extensions

Edited by Max Alekseyev, Nov 16 2019

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021
Showing 1-9 of 9 results.