cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A083064 Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0

Views

Author

Paul Barry, Apr 21 2003

Keywords

Examples

			Rows begin:
1  1   1    1     1      1       1        1         1 ...
1  2   5   14    41    122     365     1094      3281 ...  A007051
1  3  11   43   171    683    2731    10923     43691 ...  A007583
1  4  19   94   469   2344   11719    58594    292969 ...  A083065
1  5  29  173  1037   6221   37325   223949   1343693 ...  A083066
1  6  41  286  2001  14006   98041   686286   4804001 ...  A083067
1  7  55  439  3511  28087  224695  1797559  14380471 ...  A083068
1  8  71  638  5741  51668  465011  4185098  37665881 ...  A187709
1  9  89  889  8889  88889  888889  8888889  88888889 ...  A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ...  A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1,  2,  11,   94,  1037,  14006, ... A083069;
1,  3,  19,  173,  2001,  28087, ... A083071;
1,  4,  29,  286,  3511,  51668, ... A083072;
1,  5,  41,  439,  5741,  88889, ... A083073;
1,  5,  43,  469,  6221,  98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
		

Crossrefs

Extensions

Edited by Bruno Berselli, Jun 21 2013

A125083 a(n) = n^5-n^4-n^3-n^2-n-1.

Original entry on oeis.org

-1, -4, 1, 122, 683, 2344, 6221, 14006, 28087, 51668, 88889, 144946, 226211, 340352, 496453, 705134, 978671, 1331116, 1778417, 2338538, 3031579, 3879896, 4908221, 6143782, 7616423, 9358724, 11406121, 13797026, 16572947, 19778608, 23462069, 27674846, 32472031, 37912412, 44058593
Offset: 0

Views

Author

Artur Jasinski, Nov 19 2006

Keywords

Comments

More generally, the ordinary generating function for the values of quintic polynomial b*n^5 + p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (b + p + q + k + m - 5*r)*x + (13*b + 5*p + q - k - 2*m + 5*r)*2*x^2 + (33*b - 3*q + 3*m - 5*r)*2*x^3 + (26*b - 10*p + 2*q + 2*k - 4*m + 5*r)*x^4 + (b - p + q - k + m - r)*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016

Crossrefs

Programs

  • Magma
    [n^5-n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    Table[n^5 - n^4 - n^3 - n^2 - n - 1, {n, 0, 41}]
  • PARI
    a(n) = n^5-n^4-n^3-n^2-n-1; \\ Michel Marcus, Mar 31 2016

Formula

G.f.: (-1 + 2*x + 10*x^2 + 76*x^3 + 31*x^4 + 2*x^5)/(1 - x)^6. - Ilya Gutkovskiy, Mar 31 2016

A237639 Numbers n = p^4-p^3-p^2-p-1 (for prime p) such that n^4-n^3-n^2-n-1 is prime.

Original entry on oeis.org

41, 56133395601, 89362058601, 590884122501, 1275627652881, 2775672202617, 6212311361721, 7534036143501, 27344792789601, 61180709716101, 124857759197601, 206926840439901, 580608824590341, 603653936046501, 1442441423278281, 1864059458505657
Offset: 1

Views

Author

Derek Orr, Feb 10 2014

Keywords

Comments

All numbers are congruent to 1 mod 10 or 7 mod 10.
41 is the only prime in the sequence, since one of p, n, and n^4-n^3-n^2-n-1 must be divisible by 3. - Charles R Greathouse IV, Feb 11 2014

Examples

			41 = 3^4-3^3-3^2-3^1-1 (3 is prime) and 41^4-41^3-41^2-41^1-1 = 2755117 is prime. So, 41 is a member of this sequence.
		

Crossrefs

Cf. A125082.

Programs

  • PARI
    s=[]; forprime(p=2, 7000, n=p^4-p^3-p^2-p-1; if(isprime(n^4-n^3-n^2-n-1), s=concat(s, n))); s \\ Colin Barker, Feb 11 2014
  • Python
    import sympy
    from sympy import isprime
    def poly4(x):
      if isprime(x):
        f = x**4-x**3-x**2-x-1
        if isprime(f**4-f**3-f**2-f-1):
          return True
      return False
    x = 1
    while x < 10**5:
      if poly4(x):
        print(x**4-x**3-x**2-x-1)
      x += 1
    

A173179 Numbers n such that n^4-n^3-n^2-n-1 is prime.

Original entry on oeis.org

3, 8, 9, 11, 14, 17, 18, 20, 24, 27, 38, 41, 45, 48, 50, 51, 56, 59, 60, 62, 63, 71, 77, 78, 81, 84, 86, 87, 90, 92, 93, 95, 101, 111, 113, 114, 119, 146, 147, 153, 155, 171, 179, 186, 204, 207, 219, 225, 230, 231, 233, 234, 240, 246, 254, 255, 267, 284, 287, 291
Offset: 1

Views

Author

Keywords

Comments

All terms == 0 or 2 (mod 3). - Robert Israel, Mar 09 2020

Crossrefs

Programs

  • Magma
    [n: n in [2..350] | IsPrime(n^4 - n^3 - n^2 - n - 1)]; // Vincenzo Librandi, Mar 16 2020
  • Maple
    select(t -> isprime(t^4-t^3-t^2-t-1), [$2..1000]); # Robert Israel, Mar 09 2020
  • Mathematica
    f[n_]:=n^4-n^3-n^2-n-1;Select[Range[6! ],PrimeQ[f[ #1]]&]
  • PARI
    is(n)=isprime(n^4-n^3-n^2-n-1) \\ Charles R Greathouse IV, Jun 06 2017
    

Extensions

Edited by N. J. A. Sloane, Apr 10 2010

A230029 Primes p such that f(f(p)) is prime, where f(x) = x^4-x^3-x^2-x-1.

Original entry on oeis.org

3, 487, 547, 877, 1063, 1291, 1579, 1657, 2287, 2797, 3343, 3793, 4909, 4957, 6163, 6571, 7393, 8461, 8521, 8563, 9631, 11257, 11863, 12211, 12757, 12907, 13063, 13567, 13999, 14983, 15427, 15739, 16087, 16651, 16699, 17419, 17713, 17977
Offset: 1

Views

Author

Derek Orr, Feb 23 2014

Keywords

Examples

			3 is prime and (3^4-3^3-3^2-3-1)^4 - (3^4-3^3-3^2-3-1)^3 - (3^4-3^3-3^2-3-1)^2 - (3^4-3^3-3^2-3-1) - 1 = 2755117 is prime. Thus, 3 is a member of this sequence.
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    def f(x):
      return x**4-x**3-x**2-x-1
    {print(p) for p in range(10**5) if isprime(p) and isprime(f(f(p)))}
Showing 1-5 of 5 results.