A083064
Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0
Rows begin:
1 1 1 1 1 1 1 1 1 ...
1 2 5 14 41 122 365 1094 3281 ... A007051
1 3 11 43 171 683 2731 10923 43691 ... A007583
1 4 19 94 469 2344 11719 58594 292969 ... A083065
1 5 29 173 1037 6221 37325 223949 1343693 ... A083066
1 6 41 286 2001 14006 98041 686286 4804001 ... A083067
1 7 55 439 3511 28087 224695 1797559 14380471 ... A083068
1 8 71 638 5741 51668 465011 4185098 37665881 ... A187709
1 9 89 889 8889 88889 888889 8888889 88888889 ... A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ... A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1, 2, 11, 94, 1037, 14006, ... A083069;
1, 3, 19, 173, 2001, 28087, ... A083071;
1, 4, 29, 286, 3511, 51668, ... A083072;
1, 5, 41, 439, 5741, 88889, ... A083073;
1, 5, 43, 469, 6221, 98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
Cf. rows:
A007051,
A007583,
A059482,
A083065 -
A083068,
A187709,
A199760; columns:
A000027,
A028387,
A083074,
A125082,
A125083; diagonals:
A083069 -
A083073,
A191690.
A125083
a(n) = n^5-n^4-n^3-n^2-n-1.
Original entry on oeis.org
-1, -4, 1, 122, 683, 2344, 6221, 14006, 28087, 51668, 88889, 144946, 226211, 340352, 496453, 705134, 978671, 1331116, 1778417, 2338538, 3031579, 3879896, 4908221, 6143782, 7616423, 9358724, 11406121, 13797026, 16572947, 19778608, 23462069, 27674846, 32472031, 37912412, 44058593
Offset: 0
-
[n^5-n^4-n^3-n^2-n-1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
-
Table[n^5 - n^4 - n^3 - n^2 - n - 1, {n, 0, 41}]
-
a(n) = n^5-n^4-n^3-n^2-n-1; \\ Michel Marcus, Mar 31 2016
A237639
Numbers n = p^4-p^3-p^2-p-1 (for prime p) such that n^4-n^3-n^2-n-1 is prime.
Original entry on oeis.org
41, 56133395601, 89362058601, 590884122501, 1275627652881, 2775672202617, 6212311361721, 7534036143501, 27344792789601, 61180709716101, 124857759197601, 206926840439901, 580608824590341, 603653936046501, 1442441423278281, 1864059458505657
Offset: 1
41 = 3^4-3^3-3^2-3^1-1 (3 is prime) and 41^4-41^3-41^2-41^1-1 = 2755117 is prime. So, 41 is a member of this sequence.
-
s=[]; forprime(p=2, 7000, n=p^4-p^3-p^2-p-1; if(isprime(n^4-n^3-n^2-n-1), s=concat(s, n))); s \\ Colin Barker, Feb 11 2014
-
import sympy
from sympy import isprime
def poly4(x):
if isprime(x):
f = x**4-x**3-x**2-x-1
if isprime(f**4-f**3-f**2-f-1):
return True
return False
x = 1
while x < 10**5:
if poly4(x):
print(x**4-x**3-x**2-x-1)
x += 1
A173179
Numbers n such that n^4-n^3-n^2-n-1 is prime.
Original entry on oeis.org
3, 8, 9, 11, 14, 17, 18, 20, 24, 27, 38, 41, 45, 48, 50, 51, 56, 59, 60, 62, 63, 71, 77, 78, 81, 84, 86, 87, 90, 92, 93, 95, 101, 111, 113, 114, 119, 146, 147, 153, 155, 171, 179, 186, 204, 207, 219, 225, 230, 231, 233, 234, 240, 246, 254, 255, 267, 284, 287, 291
Offset: 1
-
[n: n in [2..350] | IsPrime(n^4 - n^3 - n^2 - n - 1)]; // Vincenzo Librandi, Mar 16 2020
-
select(t -> isprime(t^4-t^3-t^2-t-1), [$2..1000]); # Robert Israel, Mar 09 2020
-
f[n_]:=n^4-n^3-n^2-n-1;Select[Range[6! ],PrimeQ[f[ #1]]&]
-
is(n)=isprime(n^4-n^3-n^2-n-1) \\ Charles R Greathouse IV, Jun 06 2017
A230029
Primes p such that f(f(p)) is prime, where f(x) = x^4-x^3-x^2-x-1.
Original entry on oeis.org
3, 487, 547, 877, 1063, 1291, 1579, 1657, 2287, 2797, 3343, 3793, 4909, 4957, 6163, 6571, 7393, 8461, 8521, 8563, 9631, 11257, 11863, 12211, 12757, 12907, 13063, 13567, 13999, 14983, 15427, 15739, 16087, 16651, 16699, 17419, 17713, 17977
Offset: 1
3 is prime and (3^4-3^3-3^2-3-1)^4 - (3^4-3^3-3^2-3-1)^3 - (3^4-3^3-3^2-3-1)^2 - (3^4-3^3-3^2-3-1) - 1 = 2755117 is prime. Thus, 3 is a member of this sequence.
Showing 1-5 of 5 results.
Comments