cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A143543 Triangle read by rows: T(n,k) = number of labeled graphs on n nodes with k connected components, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 38, 19, 6, 1, 728, 230, 55, 10, 1, 26704, 5098, 825, 125, 15, 1, 1866256, 207536, 20818, 2275, 245, 21, 1, 251548592, 15891372, 925036, 64673, 5320, 434, 28, 1, 66296291072, 2343580752, 76321756, 3102204, 169113, 11088, 714, 36, 1
Offset: 1

Views

Author

Max Alekseyev, Aug 23 2008

Keywords

Comments

The Bell transform of A001187(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016

Examples

			The triangle T(n,k) starts as:
n=1:     1;
n=2:     1,    1;
n=3:     4,    3,   1;
n=4:    38,   19,   6,   1;
n=5:   728,  230,  55,  10,  1;
n=6: 26704, 5098, 825, 125, 15, 1;
...
		

Crossrefs

Cf. A001187 (first column), A006125 (row sums), A106240 (unlabeled variant).
Cf. A125207.
T(2n,n) gives A369827.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
          binomial(n, k)*2^((n-k)*(n-k-1)/2)*g(k)*k, k=1..n-1)/n)
        end:
    b:= proc(n) option remember; `if`(n=0, 1, add(expand(
          b(n-j)*binomial(n-1, j-1)*g(j)*x), j=1..n))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 02 2024
  • Mathematica
    a= Sum[2^Binomial[n,2] x^n/n!,{n,0,10}];
    Rest[Transpose[Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid (* Geoffrey Critzer, Mar 15 2011 *)
  • PARI
    T(n)={[Vecrev(p/y) | p <- Vec(serlaplace(exp(y*log(sum(k=0, n, 2^binomial(k,2)*x^k/k!, O(x*x^n))))))]}
    { foreach(T(8), row, print(row)) } \\ Andrew Howroyd, Jun 14 2025
  • Sage
    # uses[bell_matrix from A264428, A001187]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A001187(n+1), 9) # Peter Luschny, Jan 17 2016
    

Formula

SUM[n,k=0..oo] T(n,k) * x^n * y^k / n! = exp( y*( F(x) - 1 ) ) = ( SUM[n=0..oo] 2^binomial(n, 2)*x^n/n! )^y, where F(x) is e.g.f. of A001187.
T(n,k) = Sum_{q=0..n-1} C(n-1, q) T(q, k-1) 2^C(n-q,2) - Sum_{q=0..n-2} C(n-1, q) T(q+1, k) 2^C(n-1-q, 2) where T(0,0) = 1 and T(0,k) = 0 and T(n,0) = 0. - Marko Riedel, Feb 04 2019
Sum_{k=1..n} k * T(n,k) = A125207(n) - Alois P. Heinz, Feb 02 2024

A125205 Irregular triangle read by rows T(n,k) (n>=1, 0<=k<=n(n-1)/2) giving the total number of connected components in all subgraphs (V,E') with |E'|=k of the complete labeled graph K_n=(V,E).

Original entry on oeis.org

1, 2, 1, 3, 6, 3, 1, 4, 18, 30, 24, 15, 6, 1, 5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1, 6, 75, 420, 1385, 3015, 4800, 6365, 7170, 6705, 5065, 3009, 1365, 455, 105, 15, 1, 7, 126, 1050, 5355, 18690, 47880, 96796, 166890, 251370, 329945, 373947, 362292, 297115
Offset: 1

Views

Author

Max Alekseyev, Nov 23 2006

Keywords

Examples

			Triangle begins:
  1;
  2,  1;
  3,  6,   3,   1;
  4, 18,  30,  24,  15,   6,   1;
  5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1;
  ...
T(3,1) = 6 since there are three different subgraphs of K_3 with one edge and each subgraph has two connected components.
		

Crossrefs

Cf. A062734.
Cf. A125206 (row-reversed version), A125207 (row sums).

Programs

  • PARI
    { G=sum(n=0,6,(1+y)^(n*(n-1)/2)*x^n/n!); K=G*log(G); for(n=1,6,print(Vecrev(n!*polcoeff(K,n,x)))) }

Formula

G.f.: Sum_{n,k} T(n,k)*x^n/n!*y^k=(F(x,y)-1)*exp(F(x,y)-1)=G(x,y)*log(G(x,y)) where G(x,y)=Sum_{n=0..oo} (1+y)^(n(n-1)/2)*x^n/n! and F(x,y)=1+log(G(x,y)) is g.f. of A062734.

A125206 Triangular array T(n,k) (n>=1, 0<=k<=n(n-1)/2) giving the total number of connected components in all subgraphs obtained from the complete labeled graph K_n by removing k edges.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 3, 1, 6, 15, 24, 30, 18, 4, 1, 10, 45, 120, 215, 282, 295, 250, 135, 40, 5, 1, 15, 105, 455, 1365, 3009, 5065, 6705, 7170, 6365, 4800, 3015, 1385, 420, 75, 6, 1, 21, 210, 1330, 5985, 20349, 54271, 116385, 204225, 297115, 362292, 373947, 329945
Offset: 1

Views

Author

Max Alekseyev, Nov 23 2006

Keywords

Comments

Row-reversed version of A125205, see A125205 for further details

Examples

			The array starts with
1
1, 2
1, 3, 6, 3
1, 6, 15, 24, 30, 18, 4
1, 10, 45, 120, 215, 282, 295, 250, 135, 40, 5
...
		

Crossrefs

Cf. A125205 (row-reversed version), A125207 (row sums).

A223894 Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
Offset: 1

Views

Author

Geoffrey Critzer, Mar 28 2013

Keywords

Examples

			Triangle T(n,k) begins:
       1;
       2,     1;
       6,     3,    4;
      32,    12,   16,    38;
     320,    80,   80,   190,   728;
    6144,   960,  640,  1140,  4368,  26704;
  229376, 21504, 8960, 10640, 30576, 186928, 1866256;
  ...
		

Crossrefs

Cf. A001187, A006125, A123903 (column 1), A125207 (row sums), A182166 (column 2).

Programs

  • Magma
    function b(n) // b = A001187
      if n eq 0 then return 1;
      else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]);
      end if; return b;
    end function;
    A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >;
    [A223894(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
  • SageMath
    @CachedFunction
    def b(n): # b = A001187
        if (n==0): return 1
        else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n))
    def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k)
    flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2022

Formula

E.g.f. for column k: A001187(n)*x^n/n!*A(x) where A(x) is the e.g.f. for A006125.
Sum_{k=0..n} T(n, k) = A125207(n).
T(n, 1) = A123903(n).
T(n, 2) = A182166(n).
T(n, n) = A001187(n). - G. C. Greubel, Oct 03 2022

A255886 Number of orderings of the edges of the labeled complete graph K_n such that the graph induced by the first k edges is connected for every k=1,2,...,binomial(n,2).

Original entry on oeis.org

1, 1, 6, 576, 2073600, 498161664000, 12385682950717440000, 45484508287062207627264000000, 33297304775599549535597153400913920000000, 6298496203530014357849150420174490961843322880000000000, 387030157006015555733158587399026951851936435957496524308480000000000000
Offset: 1

Views

Author

Max Alekseyev, Mar 09 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Factorial(Binomial(n,2))*2^(n-2)*n/Binomial(2*n-2,n-1): n in [2..20]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    Join[{1}, Table[Binomial[n, 2]!*2^(n-2)*n/Binomial[2*n-2, n-1], {n, 2, 20}]] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    {a(n) = if( n<2, n>0, binomial(n, 2)! * 2^(n-2) * n / binomial(2*n-2, n-1))}; /* Michael Somos, Jul 23 2015 */
    

Formula

For n>1, a(n) = binomial(n,2)! * 2^(n-2) / A000108(n-1).

A223889 The number of connected components of size > 1 over all simple labeled graphs on n nodes.

Original entry on oeis.org

0, 0, 1, 7, 66, 1078, 33812, 2124864, 269617328, 68809824944, 35197776962400, 36032789666289920, 73789365506598519808, 302234307608870314427904, 2475886847109430725963593728, 40564851077856428731075010538496
Offset: 0

Views

Author

Geoffrey Critzer, Mar 28 2013

Keywords

Crossrefs

Cf. A125207.

Programs

  • Mathematica
    nn=15;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[(Log[g]-x)g,{x,0,nn}],x]

Formula

E.g.f.: (A(x) - x - 1)*B(x) where A(x) is the e.g.f. for A001187 and B(x) is the e.g.f. for A006125.
Showing 1-6 of 6 results.