A143543
Triangle read by rows: T(n,k) = number of labeled graphs on n nodes with k connected components, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 38, 19, 6, 1, 728, 230, 55, 10, 1, 26704, 5098, 825, 125, 15, 1, 1866256, 207536, 20818, 2275, 245, 21, 1, 251548592, 15891372, 925036, 64673, 5320, 434, 28, 1, 66296291072, 2343580752, 76321756, 3102204, 169113, 11088, 714, 36, 1
Offset: 1
The triangle T(n,k) starts as:
n=1: 1;
n=2: 1, 1;
n=3: 4, 3, 1;
n=4: 38, 19, 6, 1;
n=5: 728, 230, 55, 10, 1;
n=6: 26704, 5098, 825, 125, 15, 1;
...
-
g:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add(
binomial(n, k)*2^((n-k)*(n-k-1)/2)*g(k)*k, k=1..n-1)/n)
end:
b:= proc(n) option remember; `if`(n=0, 1, add(expand(
b(n-j)*binomial(n-1, j-1)*g(j)*x), j=1..n))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Feb 02 2024
-
a= Sum[2^Binomial[n,2] x^n/n!,{n,0,10}];
Rest[Transpose[Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid (* Geoffrey Critzer, Mar 15 2011 *)
-
T(n)={[Vecrev(p/y) | p <- Vec(serlaplace(exp(y*log(sum(k=0, n, 2^binomial(k,2)*x^k/k!, O(x*x^n))))))]}
{ foreach(T(8), row, print(row)) } \\ Andrew Howroyd, Jun 14 2025
-
# uses[bell_matrix from A264428, A001187]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A001187(n+1), 9) # Peter Luschny, Jan 17 2016
A125205
Irregular triangle read by rows T(n,k) (n>=1, 0<=k<=n(n-1)/2) giving the total number of connected components in all subgraphs (V,E') with |E'|=k of the complete labeled graph K_n=(V,E).
Original entry on oeis.org
1, 2, 1, 3, 6, 3, 1, 4, 18, 30, 24, 15, 6, 1, 5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1, 6, 75, 420, 1385, 3015, 4800, 6365, 7170, 6705, 5065, 3009, 1365, 455, 105, 15, 1, 7, 126, 1050, 5355, 18690, 47880, 96796, 166890, 251370, 329945, 373947, 362292, 297115
Offset: 1
Triangle begins:
1;
2, 1;
3, 6, 3, 1;
4, 18, 30, 24, 15, 6, 1;
5, 40, 135, 250, 295, 282, 215, 120, 45, 10, 1;
...
T(3,1) = 6 since there are three different subgraphs of K_3 with one edge and each subgraph has two connected components.
-
{ G=sum(n=0,6,(1+y)^(n*(n-1)/2)*x^n/n!); K=G*log(G); for(n=1,6,print(Vecrev(n!*polcoeff(K,n,x)))) }
A125206
Triangular array T(n,k) (n>=1, 0<=k<=n(n-1)/2) giving the total number of connected components in all subgraphs obtained from the complete labeled graph K_n by removing k edges.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 3, 1, 6, 15, 24, 30, 18, 4, 1, 10, 45, 120, 215, 282, 295, 250, 135, 40, 5, 1, 15, 105, 455, 1365, 3009, 5065, 6705, 7170, 6365, 4800, 3015, 1385, 420, 75, 6, 1, 21, 210, 1330, 5985, 20349, 54271, 116385, 204225, 297115, 362292, 373947, 329945
Offset: 1
The array starts with
1
1, 2
1, 3, 6, 3
1, 6, 15, 24, 30, 18, 4
1, 10, 45, 120, 215, 282, 295, 250, 135, 40, 5
...
A223894
Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
Offset: 1
Triangle T(n,k) begins:
1;
2, 1;
6, 3, 4;
32, 12, 16, 38;
320, 80, 80, 190, 728;
6144, 960, 640, 1140, 4368, 26704;
229376, 21504, 8960, 10640, 30576, 186928, 1866256;
...
-
function b(n) // b = A001187
if n eq 0 then return 1;
else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]);
end if; return b;
end function;
A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >;
[A223894(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
-
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 26 2013
-
nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
-
@CachedFunction
def b(n): # b = A001187
if (n==0): return 1
else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n))
def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k)
flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2022
A255886
Number of orderings of the edges of the labeled complete graph K_n such that the graph induced by the first k edges is connected for every k=1,2,...,binomial(n,2).
Original entry on oeis.org
1, 1, 6, 576, 2073600, 498161664000, 12385682950717440000, 45484508287062207627264000000, 33297304775599549535597153400913920000000, 6298496203530014357849150420174490961843322880000000000, 387030157006015555733158587399026951851936435957496524308480000000000000
Offset: 1
-
[1] cat [Factorial(Binomial(n,2))*2^(n-2)*n/Binomial(2*n-2,n-1): n in [2..20]]; // G. C. Greubel, Aug 03 2018
-
Join[{1}, Table[Binomial[n, 2]!*2^(n-2)*n/Binomial[2*n-2, n-1], {n, 2, 20}]] (* G. C. Greubel, Aug 03 2018 *)
-
{a(n) = if( n<2, n>0, binomial(n, 2)! * 2^(n-2) * n / binomial(2*n-2, n-1))}; /* Michael Somos, Jul 23 2015 */
A223889
The number of connected components of size > 1 over all simple labeled graphs on n nodes.
Original entry on oeis.org
0, 0, 1, 7, 66, 1078, 33812, 2124864, 269617328, 68809824944, 35197776962400, 36032789666289920, 73789365506598519808, 302234307608870314427904, 2475886847109430725963593728, 40564851077856428731075010538496
Offset: 0
-
nn=15;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[(Log[g]-x)g,{x,0,nn}],x]
Showing 1-6 of 6 results.
Comments