cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125855 Numbers k such that k+1, k+3, k+7 and k+9 are all primes.

Original entry on oeis.org

4, 10, 100, 190, 820, 1480, 1870, 2080, 3250, 3460, 5650, 9430, 13000, 15640, 15730, 16060, 18040, 18910, 19420, 21010, 22270, 25300, 31720, 34840, 43780, 51340, 55330, 62980, 67210, 69490, 72220, 77260, 79690, 81040, 82720, 88810, 97840
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2006

Keywords

Comments

It seems that, with the exception of 4, all terms are multiples of 10. - Emeric Deutsch, Dec 24 2006
In fact, all terms except 4 are congruent to 10 (mod 30). - Franklin T. Adams-Watters, Jun 05 2014
For n > 1: a(n) = 10*A007811(n-1). - Reinhard Zumkeller, Jul 18 2014 [Comment corrected by Jens Kruse Andersen, Jul 19 2014]

Examples

			For k = 10, the numbers 10 + 1 = 11, 10 + 3 = 13, 10 + 7 = 17, 10 + 9 = 19 are prime. - _Marius A. Burtea_, May 18 2019
		

Crossrefs

Cf. A010051, A245304 (subsequence), A007811.

Programs

  • Haskell
    a125855 n = a125855_list !! (n-1)
    a125855_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [1, 1, 1, 1]) [1, 3, 7, 9]
    -- Reinhard Zumkeller, Jul 18 2014
    
  • Magma
    [n:n in [1..100000]| IsPrime(n+1) and IsPrime(n+3) and IsPrime(n+7) and IsPrime(n+9)]; // Marius A. Burtea, May 18 2019
    
  • Maple
    a:=proc(n): if isprime(n+1)=true and isprime(n+3)=true and isprime(n+7)=true and isprime(n+9)=true then n else fi end: seq(a(n),n=1..500000); # Emeric Deutsch, Dec 24 2006
  • Mathematica
    Do[If[(PrimeQ[x + 1]) && (PrimeQ[x + 3]) && (PrimeQ[x + 7]) && (PrimeQ[x + 9]), Print[x]], {x, 1, 10000}]
    (* Second program *)
    Select[Range[10^5], Times @@ Boole@ Map[PrimeQ, # + {1, 3, 7, 9}] == 1 &] (* Michael De Vlieger, Jun 12 2017 *)
    Select[Range[100000],AllTrue[#+{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    is(n) = my(v=[1, 3, 7, 9]); for(t=1, #v, if(!ispseudoprime(n+v[t]), return(0))); 1 \\ Felix Fröhlich, May 18 2019

Formula

a(n) = A007530(n) - 1. - R. J. Mathar, Jun 14 2017

Extensions

More terms from Emeric Deutsch, Dec 24 2006

A125779 Numbers n such that n^4 + 1, n^4 + 3, n^4 + 7 and n^4 + 9 are all prime.

Original entry on oeis.org

83270, 519370, 939220, 1844170, 2263910, 2293460, 2429260, 2595980, 3133640, 3216530, 3474200, 3559760, 4787050, 5306720, 5505940, 6238780, 6889430, 6932770, 7320160, 8286340, 8427880, 8744290, 8961590, 9863440, 10871530
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2006

Keywords

Comments

Schinzel proved in 1958 that the set of primes of kind n^(2^k) + 1, n^(2^k) + 3, n^(2^k) + 7 and n^(2^k) + 9 is infinite for each number k > 0.

References

  • Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42.

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for k from 0 while count < 30 do
      for i in [20,30,40,50] do
        n:= 70*k + i;
        if isprime(n^4+1) and isprime(n^4+3) and isprime(n^4+7) and isprime(n^4+9) then
          count:= count+1; R:= R, n;
        fi
    od od:
    R; # Robert Israel, Feb 11 2021
  • Mathematica
    Select[Range[109*10^5],AllTrue[#^4+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, May 15 2022 *)

Extensions

Corrected and extended by Donovan Johnson, Apr 22 2008

A125856 a(n) = least number k such that k^(2^n)+1, k^(2^n)+3, k^(2^n)+7 and k^(2^n)+9 are all prime.

Original entry on oeis.org

4, 2, 83270, 5241160, 57171410, 359829200
Offset: 0

Views

Author

Artur Jasinski, Dec 12 2006

Keywords

Comments

In 1958, Schinzel showed that for each n>0, there are infinitely many primes among the numbers k^(2^n)+{1,3,7, or 9}.

References

  • Sierpinski, W. Elementary theory of numbers. Warszawa 1964 Monografie Matematyczne Vol. 42.

Crossrefs

Programs

  • PARI
    a(n) = {k = 1; while(!isprime(k^(2^n)+1) || !isprime(k^(2^n)+3) || !isprime(k^(2^n)+7) || !isprime(k^(2^n)+9), k++); k;} \\ Michel Marcus, Nov 03 2013

Extensions

Edited by Don Reble, Dec 16 2006
One more term from Farideh Firoozbakht, Jan 01 2007
Showing 1-3 of 3 results.