cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A133384 Numbers with n 0's between 1 and 2.

Original entry on oeis.org

12, 102, 1002, 10002, 100002, 1000002, 10000002, 100000002, 1000000002, 10000000002, 100000000002, 1000000000002, 10000000000002, 100000000000002, 1000000000000002, 10000000000000002, 100000000000000002, 1000000000000000002, 10000000000000000002
Offset: 0

Views

Author

Paul Curtz, Oct 29 2007

Keywords

Crossrefs

Subsequence of A052148.

Programs

  • Magma
    [10^(n+1)+2: n in [0..20]]; // Vincenzo Librandi, Aug 10 2011
  • Mathematica
    Table[FromDigits[Join[PadRight[{1},n,0],{2}]],{n,20}] (* or *) 10^Range[20]+2 (* or *) LinearRecurrence[{11,-10},{12,102},20] (* Harvey P. Dale, Oct 03 2013 *)

Formula

a(n) = 10^(n+1) + 2. - Vincenzo Librandi, Aug 10 2011
a(n) = 11*a(n-1) - 10*a(n-2); a(0)=12, a(1)=102. - Harvey P. Dale, Oct 03 2013
From Stefano Spezia, Nov 30 2023: (Start)
O.g.f.: 6*(2 - 5*x)/((1 - x)*(1 - 10*x)).
E.g.f.: 2*exp(x)*(1 + 5*exp(9*x)).
(R(a(n)) + 1)/(a(n) - 1) = 2, where R(k) = A004086(k). (End)
a(n) = 6 * A126109(n). - Alois P. Heinz, Nov 30 2023

A199685 a(n) = 5*10^n + 1.

Original entry on oeis.org

6, 51, 501, 5001, 50001, 500001, 5000001, 50000001, 500000001, 5000000001, 50000000001, 500000000001, 5000000000001, 50000000000001, 500000000000001, 5000000000000001, 50000000000000001, 500000000000000001, 5000000000000000001, 50000000000000000001, 500000000000000000001
Offset: 0

Views

Author

Vincenzo Librandi, Nov 09 2011

Keywords

Crossrefs

Cf. A126109.

Programs

Formula

a(n) = 3*A126109(n).
a(n) = 10*a(n-1) - 9.
a(n) = 11*a(n-1) - 10*a(n-2).
G.f.: 3*(2-5*x)/((1-x)*(1-10*x)).
E.g.f.: exp(x)*(5*exp(9*x) + 1). - Elmo R. Oliveira, Sep 15 2024

A102940 Numbers k such that 10^k + 6*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 11, 14, 32, 54, 55, 60, 153, 200, 461, 569, 840, 847, 1296, 1356, 2007, 2627, 2847, 3110, 6876, 9161, 17765, 33555, 59142, 65773, 280710
Offset: 1

Views

Author

Robert G. Wilson v, Dec 16 2004

Keywords

Comments

Also numbers k such that (5*10^k + 1)/3 is prime.
Numbers k such that A126109(k) is prime.
a(32) > 3*10^5. - Robert Price, Nov 15 2014

Crossrefs

Programs

  • Maple
    A102940:=n->`if`(isprime((5*10^n+1)/3),n,NULL): seq(A102940(n),n=0..1000); # Wesley Ivan Hurt, Nov 15 2014
  • Mathematica
    Do[ If[ PrimeQ[(5*10^n + 1)/3], Print[n]], {n, 0, 10000}]

Formula

a(n) = A102024(n-1) + 1.

Extensions

Edited by N. J. A. Sloane, Mar 16 2007
Addition of a(27) from Kamada data by Robert Price, Dec 08 2010
a(28) from Erik Branger May 01 2013 by Ray Chandler, Aug 16 2013
a(29)-a(31) from Kamada data by Robert Price, Nov 15 2014

A350382 a(n) = 9 + 4 * 10^n.

Original entry on oeis.org

49, 409, 4009, 40009, 400009, 4000009, 40000009, 400000009, 4000000009, 40000000009, 400000000009, 4000000000009, 40000000000009, 400000000000009, 4000000000000009, 40000000000000009, 400000000000000009, 4000000000000000009, 40000000000000000009, 400000000000000000009, 4000000000000000000009
Offset: 1

Views

Author

Bernard Schott, Dec 28 2021

Keywords

Comments

The 4th problem of 16th Tournament of Towns in 1994-1995, Spring tour 1995, 8-9 grades, Training option, asked for a proof that the number 400...009 with at least one zero is not a perfect square (see link).
Indeed, the first few squares whose digits are 0, 4 and 9 are 4900, 9409, 490000, 940900, 994009, ... (comes from A019544).
Generalization: the 4th problem of 16th Tournament of Towns in 1994-1995, Spring tour 1995, 10-11 grades, Training option, asked for a proof that the number d00...009 with at least one zero is not a perfect square, when d is a digit with 1 <= d <= 9 (see link).

Examples

			a(3) = 9 + 4 * 10^3 = 4009 = 19 * 211 is not a square.
		

References

  • Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 (in fact, it is Problem 4) of Tournament of Towns 1995, page 301.

Crossrefs

Programs

  • Maple
    Data := [seq(9 + 4*10^n,  n = 1..20)];
  • Mathematica
    a[n_] := 9 + 4*10^n; Array[a, 20] (* Amiram Eldar, Dec 28 2021 *)

Formula

a(n) = 9 + 4*10^n = 4*A133384(n-1) + 1.
a(n) = 24*A126109(n-1) + 1 = 10*A199684(n-1) - 1. - Hugo Pfoertner, Dec 28 2021
From Stefano Spezia, Dec 28 2021: (Start)
G.f.: x*(49 - 130*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)
Showing 1-4 of 4 results.