A026378
a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=1; also a(n) = T(2n-1,n-1).
Original entry on oeis.org
1, 4, 17, 75, 339, 1558, 7247, 34016, 160795, 764388, 3650571, 17501619, 84179877, 406020930, 1963073865, 9511333155, 46169418195, 224484046660, 1093097083475, 5329784874185, 26018549129545, 127154354598330, 622031993807565
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Shu-Chiuan Chang, Robert Shrock, Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips, J. Stat. Physics 137 (2009) 667, table 5.
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Toufik Mansour, Jose Luis Ramirez, Enumration of Fuss-skew paths, Ann. Math. Inform. 55 (2022) 125-136, table 2, l=1.
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
-
a := n -> (-1)^n*simplify(GegenbauerC(n-2,-n+1,3/2) - GegenbauerC(n-1,-n+1,3/2)): seq(a(n), n=1..23); # Peter Luschny, May 13 2016
-
CoefficientList[Series[(1/2)/(5*x^2-x)*(1-5*x-(1-6*x+5*x^2)^(1/2)),{x,0,30}],x] (* Vincenzo Librandi, May 13 2012 *)
Table[Hypergeometric2F1[3/2, 1-n, 2, -4], {n, 1, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)
A126216
Triangle read by rows: T(n,k) is the number of Schroeder paths of semilength n containing exactly k peaks but no peaks at level one (n >= 1; 0 <= k <= n-1).
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 14, 21, 9, 1, 42, 84, 56, 14, 1, 132, 330, 300, 120, 20, 1, 429, 1287, 1485, 825, 225, 27, 1, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1
Offset: 1
T(3,1)=5 because we have HUUDD, UUDDH, UUUDDD, UHUDD and UUDHD.
Triangle starts:
n\k 0 1 2 3 4 5 6 7 8
1 1;
2 2, 1;
3 5, 5; 1;
4 14, 21, 9, 1;
5 42, 84, 56, 14, 1;
6 132, 330, 300, 120, 20, 1;
7 429, 1287, 1485, 825, 225, 27, 1;
8 1430, 5005, 7007, 5005, 1925, 385, 35, 1;
9 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1;
10 ...
Triangle [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,...] begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 21, 9, 1, 0;
42, 84, 56, 14, 1, 0;
...
- Gheorghe Coserea, Rows n = 1..200, flattened
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, The Electronic Journal of Combinatorics 13, 2006, #R112, Theorem 3.3.
- D. Callan, Polygon Dissections and Marked Dyck Paths
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) #10.9.2.
- Rosena R. X. Du, Xiaojie Fan, and Yue Zhao, Enumeration on row-increasing tableaux of shape 2 X n, arXiv:1803.01590 [math.CO], 2018.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, arXiv:1706.08527 [hep-th], 2017.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
- Jean-Christophe Novelli and Jean-Yves Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 7.
- I. Pak and A. Postnikov, Enumeration of trees and one amazing representation of the symmetric group, Proceedings of the 8-th International Conference FPSAC, 1996.
-
T:=(n,k)->binomial(n,k)*binomial(2*n-k,n+1)/n: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
Table[Binomial[n, k] Binomial[2 n - k, n + 1]/n, {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Jan 09 2016 *)
-
tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mN*mP; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ Michel Marcus, Apr 16 2015
-
t(n,k) = binomial(n,k)*binomial(2*n-k,n+1)/n;
concat(vector(10, n, vector(n, k, t(n,k-1)))) \\ Gheorghe Coserea, Apr 24 2016
A128718
Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k UU's (doublerises) (n >= 1; 0 <= k <= n-1).
Original entry on oeis.org
1, 1, 2, 1, 5, 4, 1, 9, 18, 8, 1, 14, 50, 56, 16, 1, 20, 110, 220, 160, 32, 1, 27, 210, 645, 840, 432, 64, 1, 35, 364, 1575, 3150, 2912, 1120, 128, 1, 44, 588, 3388, 9534, 13552, 9408, 2816, 256, 1, 54, 900, 6636, 24822, 49644, 53088, 28800, 6912, 512, 1, 65, 1320, 12090, 57750, 153426, 231000, 193440, 84480, 16640, 1024
Offset: 1
T(3,2)=4 because we have UUUDDD, UUUDLD, UUUDDL and UUUDLL.
Triangle starts:
1;
1, 2;
1, 5, 4;
1, 9, 18, 8;
1, 14, 50, 56, 16;
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
-
T:=proc(n,k) if k=0 then 1 else binomial(n,k)*sum(binomial(k,j)*binomial(n-k+j,j+1),j=0..k)/n fi end: for n from 1 to 11 do seq(T(n,k),k=0..n-1) od; # yields sequence in triangular form
-
m = 12; G[_] = 0;
Do[G[z_] = 1 + t z G[z]^2 + z G[z] - t z + O[z]^m, {m}];
CoefficientList[#, t]& /@ CoefficientList[G[z], z] // Rest // Flatten (* Jean-François Alcover, Nov 15 2019 *)
A128747
Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k peaks of height >1 (n >= 1; 0 <= k <= n-1).
Original entry on oeis.org
1, 1, 2, 1, 7, 2, 1, 18, 15, 2, 1, 41, 68, 25, 2, 1, 88, 244, 171, 37, 2, 1, 183, 765, 866, 351, 51, 2, 1, 374, 2199, 3651, 2355, 636, 67, 2, 1, 757, 5954, 13601, 12708, 5421, 1058, 85, 2, 1, 1524, 15438, 46355, 58977, 36198, 11116, 1653, 105, 2, 1, 3059, 38747, 147768
Offset: 1
T(3,1)=7 because we have UDU(UD)D, UDU(UD)L, U(UD)DUD, UU(UD)DD, UU(UD)LD, UU(UD)DL and UU(UD)LL (the peaks of height >1 are shown between parentheses).
Triangle starts:
1;
1, 2;
1, 7, 2;
1, 18, 15, 2;
1, 41, 68, 25, 2;
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
-
K:=(1-z*t-sqrt(z^2*t^2-2*z*t+1+4*z^2-4*z))/2/z: G:=z*(2*K-1)/(1-z*K): Gser:=simplify(series(G,z=0,14)): for n from 1 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
Showing 1-4 of 4 results.
Comments