cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001703 Decimal concatenation of n, n+1, and n+2.

Original entry on oeis.org

12, 123, 234, 345, 456, 567, 678, 789, 8910, 91011, 101112, 111213, 121314, 131415, 141516, 151617, 161718, 171819, 181920, 192021, 202122, 212223, 222324, 232425, 242526, 252627, 262728, 272829, 282930, 293031, 303132, 313233, 323334, 333435, 343536, 353637, 363738
Offset: 0

Views

Author

mag(AT)laurel.salles.entpe.fr

Keywords

Comments

All terms are divisible by 3. Every third term starting with a(2) is divisible by 9. - Alonso del Arte, May 27 2013

Examples

			a(8) = 8910 since the three consecutive numbers starting with 8 are 8, 9, 10, and these concatenate to 8910. (This is the first term that differs from A193431).
		

Crossrefs

Cf. A074991.
For concatenations of exactly k consecutive integers see A000027 (k=1), A127421 (k=2), A279204 (k=4). For 2 or more see A035333.
See also A127422, A127423, A127424.

Programs

  • Maple
    read(transforms) :
    A001703 := proc(n)
        digcatL([n,n+1,n+2]) ;
    end proc:
    seq(A001703(n),n=1..20) ; # R. J. Mathar, Mar 29 2017
    # Third Maple program:
    a:= n-> parse(cat(n, n+1, n+2)):
    seq(a(n), n=0..50); # Alois P. Heinz, Mar 29 2017
  • Mathematica
    concat3Nums[n_] := FromDigits@ Flatten@ IntegerDigits[{n, n + 1, n + 2}]; Array[concat3Nums, 25] (* Robert G. Wilson v *)
  • PARI
    a(n)=eval(Str(n,n+1,n+2)) \\ Charles R Greathouse IV, Oct 08 2011
    
  • Python
    for n in range(100): print(int(str(n)+str(n+1)+str(n+2))) # David F. Marrs, Sep 18 2018

Formula

The portion of the sequence with all three numbers having d digits - i.e., n in 10^(d-1)..10^d-3 - is in arithmetic sequence: a(n) = (10^(2*d)+10^d+1)*n + (10^d+2). - Franklin T. Adams-Watters, Oct 07 2011

Extensions

Initial term 12 added and offset changed to 0 at the suggestion of R. J. Mathar. - N. J. A. Sloane, Mar 29 2017

A127421 Numbers whose decimal expansion is a concatenation of 2 consecutive increasing nonnegative numbers.

Original entry on oeis.org

1, 12, 23, 34, 45, 56, 67, 78, 89, 910, 1011, 1112, 1213, 1314, 1415, 1516, 1617, 1718, 1819, 1920, 2021, 2122, 2223, 2324, 2425, 2526, 2627, 2728, 2829, 2930, 3031, 3132, 3233, 3334, 3435, 3536, 3637, 3738, 3839, 3940, 4041, 4142, 4243, 4344, 4445, 4546
Offset: 1

Views

Author

Artur Jasinski, Jan 14 2007

Keywords

Comments

Primes in the sequence are in A030458. - Bruno Berselli, Mar 25 2015
a(n) always has an even number of digits unless n is in A103456. - Alonso del Arte, Oct 30 2019

Examples

			a(1) = "0,1" = 1.
a(13) = "12,13" = 1213.
		

Crossrefs

A variant of A001704.
For concatenations of exactly k consecutive integers see A000027 (k = 1), A127421 (k = 2), A001703 (k = 3), A279204 (k = 4). For 2 or more see A035333.

Programs

  • Magma
    [Seqint(Intseq(n+1) cat Intseq(n)): n in [0..50]]; // Bruno Berselli, Mar 25 2015
    
  • Maple
    a:= n-> parse(cat(n-1, n)):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 05 2018
  • Mathematica
    nMax = 49; digitsList = IntegerDigits[Range[0, nMax]]; Table[FromDigits[Flatten[{digitsList[[n]], digitsList[[n + 1]]}]], {n, nMax - 1}] (* Alonso del Arte, Oct 24 2019 *)
    Table[FromDigits[Flatten[IntegerDigits/@{n,n+1}]],{n,0,50}] (* Harvey P. Dale, May 16 2020 *)
  • Python
    for n in range(100): print(int(str(n)+str(n+1))) # David F. Marrs, Sep 17 2018
    
  • Scala
    val numerStrs = (0 to 49).map(Integer.toString(_)).toList
    val concats = (numerStrs.dropRight(1)) zip (numerStrs.drop(1))
    concats.map(x => Integer.parseInt(x.1 + x._2)) // _Alonso del Arte, Oct 24 2019

Extensions

More terms from Joshua Zucker, May 15 2007

A127423 a(1) = 1; for n > 1, a(n) = n concatenated with n - 1.

Original entry on oeis.org

1, 21, 32, 43, 54, 65, 76, 87, 98, 109, 1110, 1211, 1312, 1413, 1514, 1615, 1716, 1817, 1918, 2019, 2120, 2221, 2322, 2423, 2524, 2625, 2726, 2827, 2928, 3029, 3130, 3231, 3332, 3433, 3534, 3635, 3736, 3837, 3938, 4039, 4140, 4241, 4342, 4443, 4544, 4645
Offset: 1

Views

Author

Artur Jasinski, Jan 14 2007

Keywords

Comments

a(1) could also have been defined to be 10. In that case the initial terms would be 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 1110, 1211, 1312, 1413, 1514, 1615, 1716, 1817, 1918, 2019, 2120, 2221, 2322, 2423, 2524, 2625, 2726, 2827, 2928, 3029, 3130, 3231, 3332, 3433, ... (Comment added in case someone is searching for that sequence.) - N. J. A. Sloane, Aug 11 2018
A010051(a(A054211(n))) = 1. - Reinhard Zumkeller, Jun 27 2015

Examples

			a(12) = 1211 because 12 and 11 are two consecutive decreasing numbers.
		

Crossrefs

Programs

  • Haskell
    a127423 n = a127423_list !! (n-1)
    a127423_list = 1 : map read (zipWith (++) (tail iss) iss) :: [Integer]
                       where iss = map show [1..]
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [Seqint(Intseq(n) cat Intseq(n+1)): n in [0..50]]; // Vincenzo Librandi, Nov 08 2016
    
  • Maple
    c2:=proc(x,y) local s: s:=proc(m) nops(convert(m,base,10)) end: x*10^s(y)+y: end: seq(c2(n,n-1),n=1..53); # Emeric Deutsch, Mar 07 2007
  • Mathematica
    Join[{1}, nxt[n_] := Module[{idn = IntegerDigits[n + 1], idn1 = IntegerDigits[n]}, FromDigits[Join[idn, idn1]]]; Array[nxt, 70]] (* Vincenzo Librandi, Nov 08 2016 *)
    nxt[{n_, a_}] := {n + 1, (n + 1) * 10^IntegerLength[n] + n}; NestList[nxt, {1, 1}, 50][[All, 2]] (* Harvey P. Dale, Jan 04 2019 *)
  • PARI
    a(n) = if (n==1, 1, eval(Str(n, n-1))); \\ Michel Marcus, Oct 14 2016
    
  • Scala
    val numerStrs = (1 to 50).map(Integer.toString(_)).toList
    val concats = (numerStrs.drop(1)) zip (numerStrs.dropRight(1))
    concats.map(x => Integer.parseInt(x.1 + x._2)) // _Alonso del Arte, Oct 24 2019

Extensions

More terms from Emeric Deutsch, Mar 07 2007

A308527 Numbers that, for some x, are the concatenation of x+2, x+1 and x and are divisible by at least two of x+2, x+1 and x.

Original entry on oeis.org

321, 432, 121110, 171615, 343332, 118117116, 232231230, 334333332, 333433333332, 452245214520, 333343333333332, 333334333333333332, 333333433333333333332, 333333343333333333333332
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jun 05 2019

Keywords

Comments

For each d>=1, (10^(3*d)-4)/3+10^(2*d) (the concatenation of x+2, x+1 and x where x = (10^d-4)/3) is in the sequence, being divisible by x+1 and x+3. Thus the sequence is infinite.
It appears that a(n) is of the form (10^(3*d)-4)/3+10^(2*d) for n >= 11. - Chai Wah Wu, Jun 19 2019

Examples

			232231230 is the concatenation of 232, 231 and 230, and is divisible by 231 and 230, so it is in the sequence.
		

Crossrefs

Cf. A306643.
Subsequence of A127424.

Programs

  • Maple
    f:=  proc(x)
      local t1, t2, q, a, b;
      t1:= 10^length(x);
      t2:= t1*10^length(x+1);
      q:= x*(1+t1+t2)+2*t2+t1;
        a:= (q/x)::integer;
      b:= (q/(x+1))::integer;
      if a and b then return q elif not(a) and not(b) then return NULL fi;
      if (q/(x+2))::integer then q else NULL fi
    end proc:
    map(f, [$1..10^8]);
Showing 1-4 of 4 results.