cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127715 Rightmost border of triangle A127714: a(n) = A127714(n, (n+1)*(n+2)/2 - 1).

Original entry on oeis.org

1, 1, 3, 14, 86, 645, 5662, 56632, 633545, 7820115, 105401961, 1538517351, 24157841308, 405778641302, 7256711524298, 137607733327779, 2757147167433326, 58188668578629283, 1289965088962987961
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2007

Keywords

Examples

			a(3) = 14 = the upper left term of M^3.
		

Crossrefs

Formula

From Gary W. Adamson, Aug 02 2011: (Start)
a(n) = upper left term of M^n, M is an infinite square production matrix in which nonzero terms = A033184 with the first "1" deleted, as follows: M =
1, 1, 0, 0, 0, 0, ...
2, 2, 1, 0, 0, 0, ...
5, 5, 3, 1, 0, 0, ...
14, 14, 9, 4, 1, 0, ...
42, 42, 28, 14, 5, 1, ...
... (End)

A127716 a(n) = A127714(n, n*(n+1)/2).

Original entry on oeis.org

1, 1, 3, 11, 72, 473, 3727, 39646, 412679, 4765654, 61015451, 937386045, 14126033578, 227901084348, 3941375013541, 72677938745613, 1517730017193292, 31249446089387086, 675658943143264102, 15356377683044270187
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2007

Keywords

Comments

Triangle A127714 has (n+1)*(n+2)/2 terms in row n for n>=0. A127715 forms the rightmost border of triangle A127714.

Crossrefs

A127632 Expansion of c(x*c(x)), where c(x) is the g.f. for A000108.

Original entry on oeis.org

1, 1, 3, 11, 44, 185, 804, 3579, 16229, 74690, 347984, 1638169, 7780876, 37245028, 179503340, 870374211, 4243141332, 20786340271, 102275718924, 505235129250, 2504876652190, 12459922302900, 62167152967680, 311040862133625
Offset: 0

Views

Author

Paul Barry, Jan 20 2007, Jan 25 2007

Keywords

Comments

Old name was: Expansion of 1/(1 - x*c(x) * c(x*c(x))), where c(x) is the g.f. of A000108.
Hankel transform appears to be A075845.
Catalan transform of Catalan numbers. - Philippe Deléham, Jun 20 2007
Number of functions f:[1,n] -> [1,n] satisfying the condition that, for all i < j, f(j) - (j - i) is not in the interval [1, f(i) - 1]; see the Callan reference. - Joerg Arndt, May 31 2013
This is the number of intervals in the comb posets of Pallo. See the Pallo and Csar et al. references for the definition of these posets. For the proof, see the Aval et al. reference - F. Chapoton, Apr 06 2015
Construct a lower triangular array (T(n,k))n,k>=0 by putting the sequence of Catalan numbers as the first column of the array and completing the remaining columns using the recurrence T(n, k) = T(n, k-1) + T(n-1, k). This sequence will then be the leading diagonal of the array. - Peter Bala, May 13 2017
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 231 and 4132. (A permutation is called uniquely sorted if it has exactly one preimage under West's stack-sorting map. See the Defant link.) - Colin Defant, Jun 08 2019
a(n) is the number of 132-avoiding permutations of length 3*n whose disjoint cycle decomposition contains only 3-cycles (a,b,c) with a>b>c. See the Archer and Graves reference. - Alexander Burstein, Oct 21 2021

Crossrefs

Row sums of number triangle A127631.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 3][n+1],
          ((8*(4*n-11))*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3)
          -(8*(4*n-5))*(n-1)*(22*n^2-94*n+99)*a(n-2)
          +8*n*(n-1)*(20*n^2-67*n+48)*a(n-1))/
          ((3*(4*n-9))*(n+1)*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2015
  • Mathematica
    a[n_] := Sum[m*(2*n-m-1)!*HypergeometricPFQ[{m/2+1/2, m/2, m-n}, {m, m-2*n+1}, 4]/(n!*(n-m)!), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 24 2012, after Vladimir Kruchinin *)
    a[n_] := CatalanNumber[n - 1] HypergeometricPFQ[{3/2, 2, 1 - n}, {3, 2 - 2 n}, 4];
    a[0] := 1; Table[a[n], {n, 0, 23}] (* Peter Luschny, May 12 2021 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(m*sum(binomial(2*k-m-1,k-1)*binomial(2*n-k-1,n-1),k,m,n),m,1,n)/n; /* Vladimir Kruchinin, Oct 08 2011 */
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( serreverse( x*(1-x)^3*(1-x^3)/(1-x^2)^4 +x*O(x^n) ), n))} /* Michael Somos, May 04 2007 */
    
  • PARI
    {a(n)= local(A); if(n<1, n==0, A= serreverse( x-x^2 +x*O(x^n) ); polcoeff( 1/(1 - subst(A, x, A)), n))} /* Michael Somos, May 04 2007 */
    

Formula

a(n) = A127714(n+1, 2n+1).
G.f. A(x) satisfies: 0 = 1 - A(x) + A(x)^2 * x * c(x) where c(x) is the g.f. of A000108.
G.f.: 2/(1 + sqrt(2 * sqrt(1 - 4*x) - 1)). - Michael Somos, May 04 2007
a(n) = Sum_{k=0..n} A106566(n, k)*A000108(k). - Philippe Deléham, Jun 20 2007
a(n) = (Sum_{m=1..n} (m*Sum_{k=m..n} binomial(2*k-m-1, k-1)*binomial(2*n-k-1, n-1)))/n, a(0)=1. - Vladimir Kruchinin, Oct 08 2011
Conjecture: 3*n*(n-1)*(4*n-9)*(n+1)*a(n) - 8*n*(n-1)*(20*n^2-67*n+48)*a(n-1) + 8*(4*n-5)*(n-1)*(22*n^2-94*n+99)*a(n-2) - 8*(4*n-11)*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3) = 0. - R. J. Mathar, May 04 2018
a(n) ~ 2^(4*n - 1/2) / (sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 14 2018
From Alexander Burstein, Nov 21 2019: (Start)
G.f.: A(x) = 1 + x*c(x)^2*m(x*c(x)^2), where m(x) is the g.f. of A001006 and c(x) is the g.f. of A000108.
G.f.: A(x) satisfies: A(-x*A(x)^5) = 1/A(x). (End)
From Peter Luschny, May 12 2021: (Start)
a(n) = Catalan(n - 1) * hypergeom([3/2, 2, 1 - n], [3, 2 - 2*n], 4) for n >= 1.
a(n) = A344056(n) / A344057(n). (End)
The G.f. satisfies the algebraic equation 0 = F^4*x - F^3 + 2*F^2 - 2*F + 1. - F. Chapoton, Oct 18 2021
D-finite with recurrence 3*n*(n-1)*(n+1)*a(n) -4*n*(7*n-2)*(n-1)*a(n-1) +8*(n-1)*(2*n^2+30*n-65)*a(n-2) +8*(56*n^3-520*n^2+1534*n-1445)*a(n-3) -32*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Aug 01 2022

Extensions

Better name from David Callan, Jun 03 2013

A152400 Triangle T, read by rows, where column k of T = column 0 of matrix power T^(k+1) for k>0, with column 0 of T = unsigned column 0 of T^-1 (shifted).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 14, 8, 3, 1, 86, 45, 15, 4, 1, 645, 318, 99, 24, 5, 1, 5662, 2671, 794, 182, 35, 6, 1, 56632, 25805, 7414, 1636, 300, 48, 7, 1, 633545, 280609, 78507, 16844, 2990, 459, 63, 8, 1, 7820115, 3381993, 926026, 194384, 33685, 5026, 665, 80, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2008

Keywords

Examples

			Triangle T begins:
1;
1, 1;
3, 2, 1;
14, 8, 3, 1;
86, 45, 15, 4, 1;
645, 318, 99, 24, 5, 1;
5662, 2671, 794, 182, 35, 6, 1;
56632, 25805, 7414, 1636, 300, 48, 7, 1;
633545, 280609, 78507, 16844, 2990, 459, 63, 8, 1;
7820115, 3381993, 926026, 194384, 33685, 5026, 665, 80, 9, 1;...
where column k of T = column 0 of T^(k+1) for k>0
and column 0 of T = unsigned column 0 of T^-1 (shifted).
Amazingly, column k of T^(j+1) = column j of T^(k+1) for j>=0, k>=0.
Matrix inverse T^-1 begins:
1;
-1, 1;
-1, -2, 1;
-3, -2, -3, 1;
-14, -7, -3, -4, 1;
-86, -37, -12, -4, -5, 1;
-645, -252, -71, -18, -5, -6, 1;...
where unsigned column 0 of T^-1 = column 0 of T (shifted).
Matrix square T^2 begins:
1;
2, 1;
8, 4, 1;
45, 22, 6, 1;
318, 152, 42, 8, 1;
2671, 1251, 345, 68, 10, 1;
25805, 11869, 3253, 648, 100, 12, 1;
280609, 126987, 34546, 6898, 1085, 138, 14, 1;...
where column 0 of T^2 = column 1 of T,
and column 2 of T^2 = column 1 of T^3.
Matrix cube T^3 begins:
1;
3, 1;
15, 6, 1;
99, 42, 9, 1;
794, 345, 81, 12, 1;
7414, 3253, 798, 132, 15, 1;
78507, 34546, 8679, 1518, 195, 18, 1;
926026, 407171, 103707, 18734, 2565, 270, 21, 1;...
where column 0 of T^3 = column 2 of T,
and column 3 of T^3 = column 2 of T^4.
Matrix power T^4 begins:
1;
4, 1;
24, 8, 1;
182, 68, 12, 1;
1636, 648, 132, 16, 1;
16844, 6898, 1518, 216, 20, 1;
194384, 81218, 18734, 2912, 320, 24, 1;
2476868, 1047638, 249202, 40932, 4950, 444, 28, 1;...
where column 0 of T^4 = column 3 of T,
and column 2 of T^4 = column 3 of T^3.
Related triangle A127714 begins:
1;
1, 1, 1;
1, 2, 2, 3, 3, 3;
1, 3, 5, 5, 8, 11, 11, 14, 14, 14;
1, 4, 9, 14, 14, 22, 33, 44, 44, 58, 72, 72, 86, 86, 86;...
where right border = column 0 of this triangle A152400.
		

Crossrefs

Cf. related triangles: A152405, A127714.

Programs

  • PARI
    T(n, k)=if(k>n || n<0,0, if(k==n,1, if(k==0,sum(j=1,n,T(n,j)*T(j-1,0)), sum(j=0,n-k,T(n-k, j)*T(j+k-1, k-1)));))

Formula

Column k of T^(j+1) = column j of T^(k+1) for all j>=0, k>=0.
Column k: T(n,k) = Sum_{j=0..n-k} T(n-k,j)*T(j+k-1,k-1) for n>=k>0.
Column 0: T(n,0) = Sum_{j=1..n} T(n,j)*T(j-1,0) for n>=0.

A152405 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {m*(m+1)/2, m>=0} and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 14, 8, 3, 1, 86, 45, 14, 4, 1, 645, 318, 86, 22, 5, 1, 5662, 2671, 645, 152, 31, 6, 1, 56632, 25805, 5662, 1251, 232, 41, 7, 1, 633545, 280609, 56632, 11869, 2026, 327, 53, 8, 1, 7820115, 3381993, 633545, 126987, 20143, 2991, 457, 66, 9, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2008

Keywords

Examples

			Table begins:
(1),(1),1,(1),1,1,(1),1,1,1,(1),1,1,1,1,(1),1,...;
(1),(2),3,(4),5,6,(7),8,9,10,(11),12,13,14,15,(16),...;
(3),(8),14,(22),31,41,(53),66,80,95,(112),130,149,169,190,...;
(14),(45),86,(152),232,327,(457),606,775,965,(1202),1464,1752,2067,...;
(86),(318),645,(1251),2026,2991,(4455),6207,8274,10684,(13934),17653,...;
(645),(2671),5662,(11869),20143,30827,(48480),70355,96990,128959,...;
(5662),(25805),56632,(126987),223977,352936,(582183),874664,1240239,...;
(56632),(280609),633545,(1508209),2748448,4438122,(7641111),11831184,...;
(633545),(3381993),7820115,(19651299),36837937,60743909,...; ...
where row n equals the partial sums of row n-1 after removing terms
at positions {m*(m+1)/2, m>=0} (marked by parenthesis in above table).
For example, to generate row 3 from row 2:
[3,8, 14, 22, 31,41, 53, 66,80,95, 112, 130,...]
remove terms at positions {0,1,3,6,10,...}, yielding:
[14, 31,41, 66,80,95, 130,149,169,190, ...]
then take partial sums to obtain row 3:
[14, 45,86, 152,232,327, 457,606,775,965, ...].
Continuing in this way generates all rows of this table.
RELATION TO POWERS OF A SPECIAL TRIANGULAR MATRIX.
Columns 0 and 1 are found in triangle T=A152400, which begins:
1;
1, 1;
3, 2, 1;
14, 8, 3, 1;
86, 45, 15, 4, 1;
645, 318, 99, 24, 5, 1;
5662, 2671, 794, 182, 35, 6, 1;
56632, 25805, 7414, 1636, 300, 48, 7, 1; ...
where column k of T = column 0 of matrix power T^(k+1) for k>=0.
Furthermore, matrix powers of triangle T=A152400 satisfy:
column k of T^(j+1) = column j of T^(k+1) for all j>=0, k>=0.
Column 3 of this square array = column 1 of T^2:
1;
2, 1;
8, 4, 1;
45, 22, 6, 1;
318, 152, 42, 8, 1;
2671, 1251, 345, 68, 10, 1;
25805, 11869, 3253, 648, 100, 12, 1; ...
RELATED TRIANGLE A127714 begins:
1;
1, 1, 1;
1, 2, 2, 3, 3, 3;
1, 3, 5, 5, 8, 11, 11, 14, 14, 14;
1, 4, 9, 14, 14, 22, 33, 44, 44, 58, 72, 72, 86, 86, 86;...
where right border = column 0 of this square array.
		

Crossrefs

Cf. columns: A127715, A152401, A152404.
Cf. related triangles: A152400, A127714.

Programs

  • PARI
    {T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==m*(m+1)/2, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}
Showing 1-5 of 5 results.