cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A127777 A127773 * A002260 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 6, 6, 12, 18, 10, 20, 30, 40, 15, 30, 45, 60, 75, 21, 42, 63, 84, 105, 126, 28, 56, 84, 112, 140, 168, 196, 36, 72, 108, 144, 180, 216, 252, 288, 45, 90, 135, 180, 225, 270, 315, 360, 405, 55, 110, 165, 220, 275, 330, 385, 440, 495, 550, 66, 132, 198
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

Triangular number transform of A002260.
Swapped order of the factors: A002260 * A127773 = A127778.

Examples

			First few rows of the triangle:
   1;
   3,  6;
   6, 12, 18;
  10, 20, 30, 40;
  15, 30, 45, 60, 75;
  ...
		

Crossrefs

Cf. A000217, A127773, A000537 (row sums), A127778.

Programs

  • Maple
    T(n,k):=piecewise(k<=n,k*binomial(n+1,n-1),nMircea Merca, Apr 11 2012
  • Mathematica
    Table[k*Binomial[n+1,n-1],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Oct 26 2016 *)

Formula

T(n,k) = k*binomial(n+1,n-1) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+2-k,n-i), 1 <= k <= n. - Mircea Merca, Apr 11 2012

Extensions

More terms from Harvey P. Dale, Oct 26 2016

A143037 Triangle read by rows, A000012 * A127773 * A000012. A000012 is an infinite lower triangular matrix with all 1's, A127773 = (1; 0,3; 0,0,6; 0,0,0,10; ...).

Original entry on oeis.org

1, 3, 4, 6, 9, 10, 10, 16, 19, 20, 15, 25, 31, 34, 35, 21, 36, 46, 52, 55, 56, 28, 49, 64, 74, 80, 83, 84, 36, 64, 85, 100, 110, 116, 119, 120, 45, 81, 109, 130, 145, 155, 161, 164, 165, 55, 100, 136, 164, 185, 200, 210, 216, 219, 220
Offset: 1

Views

Author

Keywords

Comments

Right border = tetrahedral numbers, left border = triangular numbers.
Alternatively this is the square array A(n,k)
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ...
10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ...
20, 34, 52, 74, 100, 130, 164, 202, 244, 290, ...
35, 55, 80, 110, 145, 185, 230, 280, 335, 395, ...
56, 83, 116, 155, 200, 251, 308, 371, 440, 515, ...
...
read by antidiagonals where A(n,k) = n*(n^2 + 3*k*n + 3*k^2 - 1)/6 is the sum of n triangular numbers starting at A000217(k). - R. J. Mathar, May 06 2015

Examples

			First few rows of the triangle:
   1;
   3,  4;
   6,  9, 10;
  10, 16, 19,  20;
  15, 25, 31,  34,  35;
  21, 36, 46,  52,  55,  56;
  28, 49, 64,  74,  80,  83,  84;
  36, 64, 85, 100, 110, 116, 119, 120;
  ...
		

Crossrefs

Cf. A001296 (row sums).

Programs

  • Maple
    A143037 := proc(n,k)
        k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6 ;
    end proc:
    seq(seq(A143037(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 31 2022
  • Mathematica
    T[n_,k_] = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6;Table[T[n,k],{n,10},{k,n}]//Flatten (* James C. McMahon, Aug 13 2025 *)

Formula

T(n,k) = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6. - R. J. Mathar, Aug 31 2022

A132818 The matrix product A127773 * A001263 of infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 3, 6, 18, 6, 10, 60, 60, 10, 15, 150, 300, 150, 15, 21, 315, 1050, 1050, 315, 21, 28, 588, 2940, 4900, 2940, 588, 28, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 55, 2475, 29700, 138600, 291060
Offset: 1

Views

Author

Gary W. Adamson, Sep 02 2007

Keywords

Examples

			First few rows of the triangle are:
1;
3, 3;
6, 18, 6;
10, 60, 60, 10;
15, 150, 300, 150, 15;
21, 315, 1050, 1050, 315, 21;
...
		

Crossrefs

Programs

  • Maple
    A132818 := proc(n,k)
        (n+1-k)*binomial(n+1,k)*binomial(n,k-1)/2 ;
    end proc: # R. J. Mathar, Jul 29 2015

Formula

T(n,k) = A000217(n) * A001263(n,k).
Let a(n) = A006472(n), the 'triangular' factorial numbers. Then a(n)/(a(k)*a(n-k)) produces the present triangle (with a different offset). - Peter Bala, Dec 07 2011
T(n,k) = 1/2*(n+1-k)*C(n+1,k)*C(n,k-1), for n,k >= 1. O.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(3/2) = x*y + x^2*(3*y + 3*y^2) + x^3*(6*y + 18*y^2 + 6*y^3) + .... Cf. A008459 with o.g.f.: x*y/((1-x-x*y)^2 - 4*x^2*y)^(1/2). Sum {k = 1..n-1} T(n,k)*2^(n-k) = A002695(n). - Peter Bala, Apr 10 2012

Extensions

Corrected by R. J. Mathar, Jul 29 2015

A134464 (A127648 * A000012 + A000012 * A127773) - A000012.

Original entry on oeis.org

1, 2, 4, 3, 5, 8, 4, 6, 9, 13, 5, 7, 10, 14, 19, 6, 8, 11, 15, 20, 26, 7, 9, 12, 16, 21, 27, 34, 8, 10, 13, 17, 22, 28, 35, 43, 9, 11, 14, 18, 23, 29, 36, 44, 53, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64
Offset: 1

Views

Author

Gary W. Adamson, Oct 26 2007

Keywords

Comments

Row sums = A134465: (1, 6, 16, 32, 55, 86, ...).

Examples

			First few rows of the triangle:
  1;
  2,  4;
  3,  5,  8;
  4,  6,  9, 13;
  5,  7, 10, 14, 19;
  6,  8, 11, 15, 20, 26;
  7,  9, 12, 16, 21, 27, 34;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[RecurrenceTable[{a[1]==i,a[n]==a[n-1]+n},a,{n,i}],{i,10}]] (* Harvey P. Dale, Nov 12 2013 *)

Formula

(A127648 * A000012 * A000012 * A127773) - A000012, as infinite lower triangular matrices.

A127779 Triangle read by rows: A004736 * A127773.

Original entry on oeis.org

1, 2, 3, 3, 6, 6, 4, 9, 12, 10, 5, 12, 18, 20, 15, 6, 15, 24, 30, 30, 21, 7, 18, 30, 40, 45, 42, 28, 8, 21, 36, 50, 60, 63, 56, 36, 9, 24, 42, 60, 75, 84, 84, 72, 45
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

Row sums = bin(n,4), (A000332): (1, 5, 15, 35, ...).
From Clark Kimberling, Sep 16 2008: (Start)
As a rectangular array: R = A000027*A000217; R(m,n) = n*binomial(m+1,2).
R is the accumulation array (cf. A144112) of A002260 (rectangular, with n-th row (n,n,n,n,...)). (End)
As a rectangular array read by ascending antidiagonals, T(n,k) is the total number of triangles obtained when a triangle is cut into n parts with segments going down from the apex to its base and into k parts with segments parallel to its base. See Quora link. - Michel Marcus, Apr 07 2023

Examples

			First few rows of the triangle:
  1;
  2,  3;
  3,  6,  6;
  4,  9, 12, 10;
  5, 12, 18, 20, 15;
  6, 15, 24, 30, 30, 21;
  7, 18, 30, 40, 45, 42, 28;
  ...
First few rows of the rectangular array:
  1  3  6 10 15 ...
  2  6 12 20 30 ...
  3  9 18 30 45 ...
  4 12 24 40 60 ...
  5 15 30 50 75 ...
  ...
		

Crossrefs

Formula

A004736 * A127773 as infinite lower triangular matrices.

A131422 (A000012 * A127773) + (A127773 * A000012) - A000012.

Original entry on oeis.org

1, 3, 5, 6, 8, 11, 10, 12, 15, 19, 15, 17, 20, 24, 29, 21, 23, 26, 30, 35, 41, 28, 30, 33, 37, 42, 48, 55, 36, 38, 41, 45, 50, 56, 63, 71, 45, 47, 50, 54, 59, 65, 72, 80, 89, 55, 57, 60, 64, 69, 75, 82, 90, 99, 109
Offset: 1

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Left border = the triangular series, A000217. Right border = A028387, (1, 5, 11, 19, 29, 41, 55, 71, ...). Row sums = A131423: (1, 8, 25, 56, 105, 176, 273, ...).

Examples

			First few rows of the triangle are:
   1;
   3,  5;
   6,  8, 11;
  10, 12, 15, 19;
  15, 17, 20, 24, 29;
  21, 23, 26, 30, 35, 41;
  28, 30, 33, 37, 42, 48, 55;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: (1/2)*n*(n+1)+(1/2)*k*(k+1)-1 end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form - Emeric Deutsch, Sep 06 2008

Formula

(A000012 * A127773) + (A127773 * A000012) - A000012 as infinite lower triangular matrices.
T(n,k) = (n^2 + n + k^2 + k - 2)/2 (1 <= k <= n). - Emeric Deutsch, Sep 06 2008

A132819 A001263 * A127773.

Original entry on oeis.org

1, 1, 3, 1, 9, 6, 1, 18, 36, 10, 1, 30, 120, 100, 15, 1, 45, 300, 500, 225, 21, 1, 63, 630, 1750, 1575, 441, 28, 1, 84, 1176, 4900, 7350, 4116, 784, 36, 1, 108, 2016, 11760, 26460, 24696, 9408, 1296, 45, 1, 135, 3240, 25200, 79380, 111132, 70560, 19440
Offset: 1

Views

Author

Gary W. Adamson, Sep 02 2007

Keywords

Comments

Row sums = A132820: (1, 4, 16, 65, 266, ...).

Examples

			First few rows of the triangle are:
  1;
  1,  3;
  1,  9,   6;
  1, 18,  36,  10;
  1, 30, 120, 100,  15;
  1, 45, 300, 500, 225, 21;
  ...
		

Crossrefs

Formula

A001263 * A127773 as infinite lower triangular matrices.

A143219 Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.

Original entry on oeis.org

1, 2, 6, 3, 9, 18, 4, 12, 24, 40, 5, 15, 30, 50, 75, 6, 18, 36, 60, 90, 126, 7, 21, 42, 70, 105, 147, 196, 8, 24, 48, 80, 120, 168, 224, 288, 9, 27, 54, 90, 135, 189, 252, 324, 405, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Examples

			First few rows of the triangle =
  1;
  2,  6;
  3,  9, 18;
  4, 12, 24, 40;
  5, 15, 30, 50,  75;
  6, 18, 36, 60,  90, 126;
  7, 21, 42, 70, 105, 147, 196;
  ...
		

Crossrefs

Cf. A002024, A002411 (right border), A002414, A002417 (row sums), A011379.

Programs

  • Magma
    [n*Binomial(k+1, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
    
  • Mathematica
    Table[n*Binomial[k+1, 2], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
  • SageMath
    flatten([[n*binomial(k+1, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022

Formula

Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n.
Sum_{k=1..n} T(n, k) = A002417(n).
T(n, n) = A002411(n).
From G. C. Greubel, Jul 12 2022: (Start)
T(n, k) = A002024(n,k) * A127773(n,k).
T(n, k) = n * binomial(k+1, 2).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/4)*(4*n - 3*floor((n+1)/2) + 3)*binomial(2 + floor((n+1)/2), 3).
T(2*n-1, n) = A002414(n), n >= 1.
T(2*n-2, n-1) = A011379(n-1), n >= 2. (End)

A127775 Triangle read by rows: row n consists of n-1 zeros followed by 2n-1.

Original entry on oeis.org

1, 0, 3, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

a(A000217(n)) = A005408(n-1), T(n,n) = 2*n - 1. - Reinhard Zumkeller, Feb 11 2007

Examples

			First few rows of the triangle are:
1;
0, 3;
0, 0, 5;
0, 0, 0, 7;
...
		

Crossrefs

Formula

T(n,k) = (2*n - 1) * 0^(n - k), 1<=k<=n. - Reinhard Zumkeller, Feb 11 2007

Extensions

More terms from Reinhard Zumkeller, Feb 11 2007

A127774 Triangle read by rows: row n consists of n-1 zeros followed by A000292(n).

Original entry on oeis.org

1, 0, 4, 0, 0, 10, 0, 0, 0, 20, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 0, 0, 165, 0, 0, 0, 0, 0, 0, 0, 0, 0, 220, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364
Offset: 1

Views

Author

Gary W. Adamson, Jan 28 2007

Keywords

Comments

Essentially triangle T(n,k), read by rows, given by (0,0,0,0,0,0,0,...) DELTA (4,-3/2,5/6,-1/3,3/5,-1/10,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 14 2011

Examples

			First few rows of the triangle are:
  1;
  0,  4;
  0,  0, 10;
  0,  0,  0, 20;
  0,  0,  0,  0, 35;
  ...
		

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy.ntheory.primetest import is_square
    def A127774(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(a+1)*(a+2)//6 if is_square((n<<3)+1) else 0 # Chai Wah Wu, Jun 09 2025

Formula

G.f.: 1/((x*y-1)^4). - R. J. Mathar, Aug 12 2015

Extensions

More terms from Michel Marcus, Jun 10 2025
Showing 1-10 of 11 results. Next