Original entry on oeis.org
1, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 9, 0
Offset: 1
First few rows of the triangle =
1;
1, 0;
1, 2, 0;
0, 2, 3, 0;
0, 0, 3, 4, 0;
0, 0, 0, 4, 5, 0;
0, 0, 0, 0, 5, 6, 0;
0, 0, 0, 0, 0, 6, 7, 0;
0, 0, 0, 0, 0, 0, 7, 8, 0;
...
Original entry on oeis.org
1, 2, 0, 3, 2, 0, 4, 6, 4, 0, 5, 12, 16, 9, 0, 6, 20, 40, 45, 21, 0, 7, 30, 80, 135, 126, 51, 0, 8, 42, 140, 315, 441, 357, 127, 0, 9, 56, 224, 630, 1176, 1428, 1016, 323, 0, 10, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 0
Offset: 1
First few rows of the triangle =
1;
2, 0;
3, 2, 0;
4, 6, 4, 0;
5, 12, 16, 9, 0;
6, 20, 40, 45, 21, 0;
7, 30, 80, 135, 126, 51, 0;
8, 42, 140, 315, 441, 357, 127, 0;
9, 56, 224, 630, 1176, 1428, 1016, 323, 0;
10, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 0;
11, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188;
12, 110, 660, 2970, 9702, 23562, 41910, 53295, 45925, 24068, 5798;
...
A182703
Triangle read by rows: T(n,k) = number of occurrences of k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 5, 1, 1, 0, 1, 7, 4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, 15, 8, 3, 3, 1, 1, 0, 1, 22, 7, 6, 2, 2, 1, 1, 0, 1, 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1
Offset: 1
Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7:
. _ _ _ _ _ _ _
. (7) (7) |_ _ _ _ |
. (4+3) (4+3) |_ _ _ _|_ |
. (5+2) (5+2) |_ _ _ | |
. (3+2+2) (3+2+2) |_ _ _|_ _|_ |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) |_|
. ----------------
. 19,8,5,3,2,1,1 --> Row 7 of triangle A207031.
. |/|/|/|/|/|/|
. 11,3,2,1,1,0,1 --> Row 7 of this triangle.
.
Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So, for k = 1..7, row 7 gives: 11, 3, 2, 1, 1, 0, 1.
Triangle begins:
1;
1, 1;
2, 0, 1;
3, 2, 0, 1;
5, 1, 1, 0, 1;
7, 4, 2, 1, 0, 1;
11, 3, 2, 1, 1, 0, 1;
15, 8, 3, 3, 1, 1, 0, 1;
22, 7, 6, 2, 2, 1, 1, 0, 1;
30, 15, 6, 5, 3, 2, 1, 1, 0, 1;
42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1;
56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;
...
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n,i) option remember; local g;
if n=0 then [1]
elif n<2 or i<2 then [0]
else g:= `if`(i>n, [0], b(n-i, i));
p(p([0$j=2..i, g[1]], b(n, i-1)), g)
fi
end:
h:= proc(n) option remember;
`if`(n=0, 1, b(n, n)[1]+h(n-1))
end:
T:= proc(n) h(n-1), b(n, n)[2..n][] end:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 19 2012
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1}, n<2 || i<2, {0}, True, g = If [i>n, {0}, b[n-i, i]]; p[p[Append[Array[0&, i-1], g[[1]]], b[n, i-1]], g]]]; h[n_] := h[n] = If[n == 0, 1, b[n, n][[1]] + h[n-1]]; t[n_] := {h[n-1], Sequence @@ b[n, n][[2 ;; n]]}; Table[t[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Alois P. Heinz's Maple code *)
Table[{PartitionsP[n-1]}~Join~Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], k], {k,2,n}], {n,1,12}] // Flatten (* Robert Price, May 15 2020 *)
A071919
Number of monotone nondecreasing functions [n]->[m] for n >= 0, m >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 0
Offset: 0
Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 1, 4, 10, 20, 35, 56, 84, 120, ...
0, 1, 5, 15, 35, 70, 126, 210, 330, ...
0, 1, 6, 21, 56, 126, 252, 462, 792, ...
0, 1, 7, 28, 84, 210, 462, 924, 1716, ...
0, 1, 8, 36, 120, 330, 792, 1716, 3432, ...
0, 1, 9, 45, 165, 495, 1287, 3003, 6435, ...
- G. C. Greubel, Table of n, a(n) for the first 101 antidiagonals, flattened
- D. Merlini, F. Uncini and M. C. Verri, A unified approach to the study of general and palindromic compositions, Integers 4 (2004), A23, 26 pp.
- Wolfdieter Lang, Simple proofs of some facts related to the Bell sequence and triangles A007318 (Pascal) and A071919 (enlarged Pascal). [From _Wolfdieter Lang_, Jun 23 2010]
-
A:= (n, m)-> binomial(n+m-1, n):
seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Jan 13 2017
-
Table[Table[Binomial[m - 1 + n, n], {m, 0, 10}], {n, 0, 10}] // Grid (* Geoffrey Critzer, Jun 03 2009 *)
a[n_, m_] := Binomial[m - 1 + n, n]; Table[Table[a[n, m - n], {n, 0, m}], {m, 0, 10}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
{ n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+i; v[i][j+k]=v[i-1][j]+i+1)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
-
{a(n) = my(m); if( n<1, n==0, m = (sqrtint(8*n+1) - 1)\2; binomial(m-1, n - m*(m+1)/2))}; /* Michael Somos, Aug 20 2006 */
A129185
Shift operator, left.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1
First few rows of the matrix:
0, 1;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 0, 1;
...
-
Table[PadLeft[{1},n,0],{n,20}]//Flatten//Rest (* Harvey P. Dale, Jul 11 2020 *)
A194702
Triangle read by rows: T(k,m) = number of occurrences of k in the last section of the set of partitions of (2 + m).
Original entry on oeis.org
2, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1
Triangle begins:
2,
0, 2,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
...
For k = 1 and m = 1; T(1,1) = 2 because there are two parts of size 1 in the last section of the set of partitions of 3, since 2 + m = 3, so a(1) = 2. For k = 2 and m = 1; T(2,1) = 0 because there are no parts of size 2 in the last section of the set of partitions of 3, since 2 + m = 3, so a(2) = 0.
Always the sum of row k = p(2) =
A000041(n) = 2.
A194710
Triangle read by rows: T(k,m) = number of occurrences of k in the last section of the set of partitions of (10 + m).
Original entry on oeis.org
42, 15, 27, 10, 14, 18, 5, 10, 10, 17, 4, 5, 8, 10, 15, 2, 5, 4, 8, 9, 14, 2, 2, 4, 5, 7, 9, 13, 1, 2, 2, 4, 4, 8, 8, 13, 1, 1, 2, 2, 4, 4, 7, 9, 12, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12
Offset: 1
Triangle begins:
42;
15, 27;
10, 14, 18;
5, 10, 10, 17;
4, 5, 8, 10, 15;
2, 5, 4, 8, 9, 14;
2, 2, 4, 5, 7, 9, 13;
1, 2, 2, 4, 4, 8, 8, 13;
1, 1, 2, 2, 4, 4, 7, 9, 12;
0, 1, 1, 2, 2, 4, 4, 7, 8, 13;
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12;
...
For k = 1 and m = 1; T(1,1) = 42 because there are 42 parts of size 1 in the last section of the set of partitions of 11, since 10 + m = 11, so a(1) = 42. For k = 2 and m = 1; T(2,1) = 15 because there are 15 parts of size 2 in the last section of the set of partitions of 11, since 10 + m = 11, so a(2) = 15.
Always the sum of row k = p(10) =
A000041(10) = 42.
A129184
Shift operator, right.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1
First few rows of the triangle:
0;
1, 0;
0, 1, 0;
0, 0, 1, 0;
0, 0, 0, 1, 0;
...
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A194704
Triangle read by rows: T(k,m) = number of occurrences of k in the last section of the set of partitions of (4 + m).
Original entry on oeis.org
5, 1, 4, 1, 2, 2, 0, 1, 1, 3, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2
Offset: 1
Triangle begins:
5,
1, 4,
1, 2, 2,
0, 1, 1, 3,
1, 0, 1, 1, 2,
...
For k = 1 and m = 1: T(1,1) = 5 because there are five parts of size 1 in the last section of the set of partitions of 5, since 4 + m = 5, so a(1) = 5.
For k = 2 and m = 1: T(2,1) = 1 because there is only one part of size 2 in the last section of the set of partitions of 5, since 4 + m = 5, so a(2) = 1.
Always the sum of row k = p(4) =
A000041(4) = 5.
-
P(n)={my(M=matrix(n,n), d=4); M[1,1]=numbpart(d); for(m=1, n, forpart(p=m+d, for(k=1, #p, my(t=p[k]); if(t<=n && m<=t, M[t, m]++)), [2, m+d])); M}
{ my(T=P(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020
Showing 1-10 of 19 results.
Comments