cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001844 Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.

Original entry on oeis.org

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers denoted by
...2...
....P..
...4.n.
Numbers of the form (k^2+1)/2 for k odd.
(y(2x+1))^2 + (y(2x^2+2x))^2 = (y(2x^2+2x+1))^2. E.g., let y = 2, x = 1; (2(2+1))^2 + (2(2+2))^2 = (2(2+2+1))^2, (2(3))^2 + (2(4))^2 = (2(5))^2, 6^2 + 8^2 = 10^2, 36 + 64 = 100. - Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 08 2002
a(n) is also the number of 3 X 3 magic squares with sum 3(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 11 2002
For n > 0, a(n) is the smallest k such that zeta(2) - Sum_{i=1..k} 1/i^2 <= zeta(3) - Sum_{i=1..n} 1/i^3. - Benoit Cloitre, May 17 2002
Number of convex polyominoes with a 2 X (n+1) minimal bounding rectangle.
The prime terms are given by A027862. - Lekraj Beedassy, Jul 09 2004
First difference of a(n) is 4n = A008586(n). Any entry k of the sequence is followed by k + 2*(1 + sqrt(2k - 1)). - Lekraj Beedassy, Jun 04 2006
Integers of the form 1 + x + x^2/2 (generating polynomial is Schur's polynomial as in A127876). - Artur Jasinski, Feb 04 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Row sums of triangle A132778. - Gary W. Adamson, Sep 02 2007
Binomial transform of [1, 4, 4, 0, 0, 0, ...]; = inverse binomial transform of A001788: (1, 6, 24, 80, 240, ...). - Gary W. Adamson, Sep 02 2007
Narayana transform (A001263) of [1, 4, 0, 0, 0, ...]. Equals A128064 (unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Dec 29 2007
k such that the Diophantine equation x^3 - y^3 = x*y + k has a solution with y = x-1. If that solution is (x,y) = (m+1,m) then m^2 + (m+1)^2 = k. Note that this Diophantine equation is an elliptic curve and (m+1,m) is an integer point on it. - James R. Buddenhagen, Aug 12 2008
Numbers k such that (k, k, 2*k-2) are the sides of an isosceles triangle with integer area. Also, k such that 2*k-1 is a square. - James R. Buddenhagen, Oct 17 2008
a(n) is also the least weight of self-conjugate partitions having n+1 different odd parts. - Augustine O. Munagi, Dec 18 2008
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) = A153869 * (1, 2, 3, ...). - Gary W. Adamson, Jan 03 2009
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) where a(n) = 2n*(n-1)+1, all tuples of square numbers (X-Y, X, X+Y) are produced by ((m*(a(n)-2n))^2, (m*a(n))^2, (m*(a(n)+2n-2))^2) where m is a whole number. - Doug Bell, Feb 27 2009
Equals (1, 2, 3, ...) convolved with (1, 3, 4, 4, 4, ...). E.g., a(3) = 25 = (1, 2, 3, 4) dot (4, 4, 3, 1) = (4 + 8 + 9 + 4). - Gary W. Adamson, May 01 2009
The running sum of squares taken two at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals the odd integers convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 25 2009
Equals the triangular numbers convolved with [1, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
When the positive integers are written in a square array by diagonals as in A038722, a(n) gives the numbers appearing on the main diagonal. - Joshua Zucker, Jul 07 2009
The finite continued fraction [n,1,1,n] = (2n+1)/(2n^2 + 2n + 1) = (2n+1)/a(n); and the squares of the first two denominators of the convergents = a(n). E.g., the convergents and value of [4,1,1,4] = 1/4, 1/5, 2/9, 9/41 where 4^2 + 5^2 = 41. - Gary W. Adamson, Jul 15 2010
From Keith Tyler, Aug 10 2010: (Start)
Running sum of A008574.
Square open pyramidal number; that is, the number of elements in a square pyramid of height (n) with only surface and no bottom nodes. (End)
For k>0, x^4 + x^2 + k factors over the integers iff sqrt(k) is in this sequence. - James R. Buddenhagen, Aug 15 2010
Create the simple continued fraction from Pythagorean triples to get [2n + 1; 2n^2 + 2n, 2n^2 + 2n + 1]; its value equals the rational number 2n + 1 + a(n) / (4n^4 + 8n^3 + 6n^2 + 2n + 1). - J. M. Bergot, Sep 30 2011
a(n), n >= 1, has in its prime number factorization only primes of the form 4*k+1, i.e., congruent to 1 (mod 4) (see A002144). This follows from the fact that a(n) is a primitive sum of two squares and odd. See Theorem 3.20, p. 164, in the given Niven-Zuckerman-Montgomery reference. E.g., a(3) = 25 = 5^2, a(6) = 85 = 5*17. - Wolfdieter Lang, Mar 08 2012
From Ant King, Jun 15 2012: (Start)
a(n) is congruent to 1 (mod 4) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 5, 4, 7, 5, 7, 4, 5, 1.
The units' digits of the a(n) form a purely periodic palindromic 5-cycle 1, 5, 3, 5, 1.
(End)
Number of integer solutions (x,y) of |x| + |y| <= n. Geometrically: number of lattice points inside a square with vertices (n,0), (0,-n), (-n,0), (0,n). - César Eliud Lozada, Sep 18 2012
(a(n)-1)/a(n) = 2*x / (1+x^2) where x = n/(n+1). Note that in this form, this is the velocity-addition formula according to the special theory of relativity (two objects traveling at 1/(n+1) slower than c relative to each other appear to travel at 1/a(n) less than c to a stationary observer). - Christian N. K. Anderson, May 20 2013 [Corrected by Rémi Guillaume, May 22 2025]
A geometric curiosity: the envelope of the circles x^2 + (y-a(n)/2)^2 = ((2n+1)/2)^2 is the parabola y = x^2, the n=0 circle being the osculating circle at the parabola vertex. - Jean-François Alcover, Dec 02 2013
Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; a(n-1) gives the number of internal regions into which the plane is divided (cf. A051890, A046092); a(n-1) = A051890(n) - 1 = A046092(n-1) + 1. - Jaroslav Krizek, Dec 27 2013
a(n) is also, of course, the scalar product of the 2-vector (n, n+1) (or (n+1, n)) with itself. The unique inverse of (n, n+1) as vector in the Clifford algebra over the Euclidean 2-space is (1/a(n))(0, n, n+1, 0) (similarly for the other vector). In general the unique inverse of such a nonzero vector v (odd element in Cl_2) is v^(-1) = (1/|v|^2) v. Note that the inverse with respect to the scalar product is not unique for any nonzero vector. See the P. Lounesto reference, sects. 1.7 - 1.12, pp. 7-14. See also the Oct 15 2014 comment in A147973. - Wolfdieter Lang, Nov 06 2014
Subsequence of A004431, for n >= 1. - Bob Selcoe, Mar 23 2016
Numbers k such that 2k - 1 is a perfect square. - Juri-Stepan Gerasimov, Apr 06 2016
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 574", based on the 5-celled von Neumann neighborhood. - Robert Price, May 13 2016
a(n) is the first integer in a sum of (2*n + 1)^2 consecutive integers that equals (2*n + 1)^4. - Patrick J. McNab, Dec 24 2016
Central elements of odd-length rows of the triangular array of positive integers. a(n) is the mean of the numbers in the (2*n + 1)-th row of this triangle. - David James Sycamore, Aug 01 2018
Intersection of A000982 and A080827. - David James Sycamore, Aug 07 2018
An off-diagonal of the array of Delannoy numbers, A008288, (or a row/column when the array is shown as a square). As such, this is one of the crystal ball sequences. - Jack W Grahl, Feb 15 2021 and Shel Kaphan, Jan 18 2023
a(n) appears as a solution to a "Riddler Express" puzzle on the FiveThirtyEight website. The Jan 21 2022 issue (problem) and the Jan 28 2022 issue (solution) present the following puzzle and include a proof. - Fold a square piece of paper in half, obtaining a rectangle. Fold again to obtain a square with 1/4 the size of the original square. Then make n cuts through the folded paper. a(n) is the greatest number of pieces of the unfolded paper after the cutting. - Manfred Boergens, Feb 22 2022
a(n) is (1/6) times the number of 2 X 2 triangles in the n-th order hexagram with 12*n^2 cells. - Donghwi Park, Feb 06 2024
If k is a centered square number, its index in this sequence is n = (sqrt(2k-1)-1)/2. - Rémi Guillaume, Mar 30 2025.
Row sums of the symmetric triangle of odd numbers [1]; [1, 3, 1]; [1, 3, 5, 3, 1]; [1, 3, 5, 7, 5, 3, 1]; .... - Marco Zárate, Jun 15 2025

Examples

			G.f.: 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first four such partitions, corresponding to n = 0,1,2,3, i.e., to a(n) = 1,5,13,25, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - _Augustine O. Munagi_, Dec 18 2008
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
  • Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.

Crossrefs

X values are A005408; Y values are A046092.
Cf. A008586 (first differences), A005900 (partial sums), A254373 (digital roots).
Subsequence of A004431.
Right edge of A055096; main diagonal of A069480, A078475, A129312.
Row n=2 (or column k=2) of A008288.
Cf. A016754.

Programs

  • Haskell
    a001844 n = 2 * n * (n + 1) + 1
    a001844_list = zipWith (+) a000290_list $ tail a000290_list
    -- Reinhard Zumkeller, Dec 04 2012
    
  • Magma
    [2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013
    
  • Magma
    [n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016
    
  • Maple
    A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[2n(n + 1) + 1, {n, 0, 50}]
    FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *)
    CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *)
    Total/@Partition[Range[0,50]^2,2,1] (* Harvey P. Dale, Dec 05 2020 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,
    j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
  • PARI
    {a(n) = 2*n*(n+1) + 1};
    
  • PARI
    x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016
    
  • Python
    print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021
  • Sage
    [i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.
a(n) = 1 + 3 + 5 + ... + 2*n-1 + 2*n+1 + 2*n-1 + ... + 3 + 1. - Amarnath Murthy, May 28 2001
a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=-1), z(k+1) = 1/(z(k)+2i). - Benoit Cloitre, Aug 06 2002
Nearest integer to 1/Sum_{k>n} 1/k^3. - Benoit Cloitre, Jun 12 2003
G.f.: (1+x)^2/(1-x)^3.
E.g.f.: exp(x)*(1+4x+2x^2).
a(n) = a(n-1) + 4n.
a(-n) = a(n-1).
a(n) = A064094(n+3, n) (fourth diagonal).
a(n) = 1 + Sum_{j=0..n} 4*j. - Xavier Acloque, Oct 08 2003
a(n) = A046092(n)+1 = (A016754(n)+1)/2. - Lekraj Beedassy, May 25 2004
a(n) = Sum_{k=0..n+1} (-1)^k*binomial(n, k)*Sum_{j=0..n-k+1} binomial(n-k+1, j)*j^2. - Paul Barry, Dec 22 2004
a(n) = ceiling((2n+1)^2/2). - Paul Barry, Jul 16 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=5, a(2)=13. - Jaume Oliver Lafont, Dec 02 2008
a(n)*a(n-1) = 4*n^4 + 1 for n > 0. - Reinhard Zumkeller, Feb 12 2009
Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n-1)+1. - Doug Bell, Feb 27 2009
a(n) = sqrt((A056220(n)^2 + A056220(n+1)^2) / 2). - Doug Bell, Mar 08 2009
a(n) = floor(2*(n+1)^3/(n+2)). - Gary Detlefs, May 20 2010
a(n) = A000330(n) - A000330(n-2). - Keith Tyler, Aug 10 2010
a(n) = A069894(n)/2. - J. M. Bergot, Jun 11 2012
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = (Pi/2)*tanh(Pi/2) = 1.4406595199775... = A228048. - Ant King, Jun 15 2012
a(n) = A209297(2*n+1,n+1). - Reinhard Zumkeller, Jan 19 2013
a(n)^3 = A048395(n)^2 + A048395(-n-1)^2. - Vincenzo Librandi, Jan 19 2013
a(n) = A000217(2n+1) - n. - Ivan N. Ianakiev, Nov 08 2013
a(n) = A251599(3*n+1). - Reinhard Zumkeller, Dec 13 2014
a(n) = A101321(4,n). - R. J. Mathar, Jul 28 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = Sum_{k=0..n} A008574(k).
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = exp(-1) = A068985. (End)
a(n) = 4 * A000217(n) + 1. - Bruce J. Nicholson, Jul 10 2017
a(n) = A002522(n) + A005563(n) = A002522(n+1) + A005563(n-1). - Bruce J. Nicholson, Aug 05 2017
Sum_{n>=0} a(n)/n! = 7*e. Sum_{n>=0} 1/a(n) = A228048. - Amiram Eldar, Jun 20 2020
a(n) = A000326(n+1) + A000217(n-1). - Charlie Marion, Nov 16 2020
a(n) = Integral_{x=0..2n+2} |1-x| dx. - Pedro Caceres, Dec 29 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)
a(n) = A001651(n+1) + 1 - A028242(n). - Charlie Marion, Apr 05 2022
a(n) = A016754(n) - A046092(n). - Leo Tavares, Sep 16 2022
For n>0, a(n) = A101096(n+2) / 30. - Andy Nicol, Feb 06 2025
From Rémi Guillaume, Apr 21 2025: (Start)
a(n) = (2*A003215(n)+1)/3.
a(n) = (4*A005448(n+1)-1)/3.
a(n) + a(n-1) = A001845(n) - A001845(n-1), for n >= 1.
a(n) = (A005917(n+1))/(2n+1). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A000255 a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 53, 309, 2119, 16687, 148329, 1468457, 16019531, 190899411, 2467007773, 34361893981, 513137616783, 8178130767479, 138547156531409, 2486151753313617, 47106033220679059, 939765362752547227, 19690321886243846661, 432292066866171724421
Offset: 0

Views

Author

Keywords

Comments

a(n) counts permutations of [1,...,n+1] having no substring [k,k+1]. - Len Smiley, Oct 13 2001
Also, for n > 0, determinant of the tridiagonal n X n matrix M such that M(i,i)=i and for i=1..n-1, M(i,i+1)=-1, M(i+1,i)=i. - Mario Catalani (mario.catalani(AT)unito.it), Feb 04 2003
Also, for n > 0, maximal permanent of a nonsingular n X n (0,1)-matrix, which is achieved by the matrix with just n-1 0's, all on main diagonal. [For proof, see next entry.] - W. Edwin Clark, Oct 28 2003
Proof from Richard Brualdi and W. Edwin Clark, Nov 15 2003: Let n >= 4. Take an n X n (0,1)-matrix A which is nonsingular. It has t >= n-1, 0's, otherwise there will be two rows of all 1's. Let B be the matrix obtained from A by replacing t-(n-1) of A's 0's with 1's. Let D be the matrix with all 1's except for 0's in the first n-1 positions on the diagonal. This matrix is easily seen to be non-singular. Now we have per(A) < = per(B) < = per (D), where the first inequality follows since replacing 0's by 1's cannot decrease the permanent and the second from Corollary 4.4 in the Brualdi et al. reference, which shows that per(D) is the maximum permanent of ANY n X n matrix with n -1 0's. Corollary 4.4 requires n >= 4. a(n) for n < 4 can be computed directly.
With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
Number of fixed-point-free permutations of n+2 that begin with a 2; e.g., for 1234, we have 2143, 2341, 2413, so a(2)=3. Also number of permutations of 2..n+2 that have no agreements with 1..n+1. E.g., for 123 against permutations of 234, we have 234, 342 and 432. Compare A047920. - Jon Perry, Jan 23 2004. [This can be proved by the standard argument establishing that d(n+2) = (n+1)(d(n+1)+d(n)) for derangements A000166 (n+1 choices of where 1 goes, then either 1 is in a transposition, or in a cycle of length at least 3, etc.). - D. G. Rogers, Aug 28 2006]
Stirling transform of A006252(n+1)=[1,1,2,4,14,38,...] is a(n)=[1,3,11,53,309,...]. - Michael Somos, Mar 04 2004
a(n+1) is the sequence of numerators of the self-convergents to 1/(e-2); see A096654. - Clark Kimberling, Jul 01 2004
Euler's interpretation was "fixedpoint-free permutations beginning with 2" and he listed the terms up to 148329 (although he was blind at the time). - Don Knuth, Jan 25 2007
Equals lim_{k->infinity} A153869^k. - Gary W. Adamson, Jan 03 2009
Hankel transform is A059332. - Paul Barry, Apr 22 2009
This sequence appears in the analysis of Euler's divergent series 1 - 1! + 2! - 3! + 4! ... by Lacroix, see Hardy. For information about this and related divergent series see A163940. - Johannes W. Meijer, Oct 16 2009
a(n), n >= 1, enumerates also the ways to distribute n beads, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and one open cord allowed to have any number of beads. Each beadless necklace as well as the beadless cord contributes a factor 1 in the counting, e.g., a(0):=1*1=1. There are k! possibilities for the cord with k>=0 beads, which means that the two ends of the cord should be considered as fixed, in short: a fixed cord. This produces for a(n) the exponential (aka binomial) convolution of the sequences {n!=A000142(n)} and the subfactorials {A000166(n)}.
See the formula below. Alternatively, the e.g.f. for this problem is seen to be (exp(-x)/(1-x))*(1/(1-x)), namely the product of the e.g.f.s for the subfactorials (from the unordered necklace problem, without necklaces with exactly one bead) and the factorials (from the fixed cord problem). Therefore the recurrence with inputs holds also. a(0):=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010
a(n) = (n-1)a(n-1) + (n-2)a(n-2) gives the same sequence offset by a 1. - Jon Perry, Sep 20 2012
Also, number of reduced 2 X (n+2) Latin rectangles. - A.H.M. Smeets, Nov 03 2013
Second column of Euler's difference table (second diagonal in example of A068106). - Enrique Navarrete, Dec 13 2016
If we partition the permutations of [n+2] in A000166 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n) (the class starting with the digit 1 is empty since no derangement starts with 1). Hence, A000166(n+2)=(n+1)*a(n), so a(n) is the size of each nonempty class of permutations of [n+2] in A000166. For example, for n=3 we have 44=4*11 (see link). - Enrique Navarrete, Jan 11 2017
For n >= 1, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+2), 1 <= j <= n. For example, for n=2, the 3 circular permutations in S4 that avoid substrings {13,24} are (1234),(1423),(1432). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) holding for all n and k, which in turn is easily proved by induction making use of the given recurrences. - Peter Bala, Nov 21 2017
Number of permutations of [n] where the k-th fixed points are k-colored and all other points are unicolored. - Alois P. Heinz, Apr 28 2025

Examples

			a(3)=11: 1 3 2 4; 1 4 3 2; 2 1 4 3; 2 4 1 3; 3 2 1 4; 3 2 4 1; 4 1 3 2; 4 2 1 3; 4 3 2 1; 2 4 3 1; 3 1 4 2. The last two correspond to (n-1)*a(n-2) since they contain a [j,n+1,j+1].
Cord-necklaces problem. For n=4 one considers the following weak two part compositions of 4: (4,0), (2,2), (1,3), and (0,4), where (3,1) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively 4!*1, (binomial(4,2)*2)*sf(2), (binomial(4,1)*1)*sf(3), and 1*sf(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there). This adds up as 24 + 6*2 + 4*2 + 9 = 53 = a(4). - _Wolfdieter Lang_, Jun 02 2010
G.f. = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 309*x^5 + 2119*x^6 + 16687*x^7 + ...
		

References

  • Richard A. Brualdi and Herbert J. Ryser, Combinatorial Matrix Theory, Camb. Univ. Press, 1991, Section 7.2, p. 202.
  • Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 and p. 177 (5.1).
  • CRC Handbook of Combinatorial Designs, 1996, p. 104.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, pp. 263-264. See Table 7.5.1, row 0; also Table 7.6.1, row 0.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Ya. Vilenkin, Combinatorics, pp. 54 - 56, Academic Press, 1971. Caravan in the Desert, E_n = a(n-1), n >= 1.

Crossrefs

Row sums of triangle in A046740. A diagonal of triangle in A068106.
A052655 gives occurrence count for non-singular (0, 1)-matrices with maximal permanent, A089475 number of different values of permanent, A089480 occurrence counts for permanents all non-singular (0, 1)-matrices, A087982, A087983.
A diagonal in triangle A010027.
a(n) = A086764(n+1,1).

Programs

  • Haskell
    a000255 n = a000255_list !! n
    a000255_list = 1 : 1 : zipWith (+) zs (tail zs) where
       zs = zipWith (*) [1..] a000255_list
    -- Reinhard Zumkeller, Dec 05 2011
    
  • Magma
    I:=[1, 3]; [1] cat  [n le 2 select I[n] else n*Self(n-1)+(n-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
  • Maple
    a := n -> hypergeom([2,-n], [], 1)*(-1)^n:
    seq(simplify(a(n)), n=0..19); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n-1, -1)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    c = CoefficientList[Series[Exp[ -z]/(1 - z)^2, {z, 0, 30}], z]; For[n = 0, n < 31, n++; Print[c[[n]]*(n - 1)! ]]
    Table[Subfactorial[n] + Subfactorial[n + 1], {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
    RecurrenceTable[{a[n]==n a[n-1]+(n-1)a[n-2],a[0]==1,a[1]==1},a[n], {n,20}] (* Harvey P. Dale, May 10 2011 *)
    a[ n_] := If[ n < 0, 0, Round[ n! (n + 2) / E]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {- n, 2}, {}, 1]] (* Michael Somos, Jun 01 2013 *)
    sa[k_Integer]/;k>=2 := SparseArray[{{i_, i_} -> i, Band[{2, 1}] -> -1, {i_, j_} /; (i == j - 1) :> i}, {k, k}]; {1, 1}~Join~Array[Det[sa[#]] &, 20, 2] (* Shenghui Yang, Oct 15 2024 *)
  • PARI
    {a(n) = if( n<0, 0, contfracpnqn( matrix( 2, n, i, j, j - (i==1)))[1, 1])};
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -x + x * O(x^n)) / (1 - x)^2, n))};
    
  • Sage
    from sage.combinat.sloane_functions import ExtremesOfPermanentsSequence2
    e = ExtremesOfPermanentsSequence2()
    it = e.gen(1,1,1)
    [next(it) for i in range(20)]
    # Zerinvary Lajos, May 15 2009
    

Formula

E.g.f.: exp(-x)/(1-x)^2.
a(n) = Sum_{k=0..n} (-1)^k * (n-k+1) * n!/k!. - Len Smiley
Inverse binomial transform of (n+1)!. - Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 09 2001
a(n-2) = !n/(n - 1) where !n is the subfactorial of n, A000166(n). - Lekraj Beedassy, Jun 18 2002
a(n) = floor((1/e)*n!*(n+2)+1/2). - Benoit Cloitre, Jan 15 2004
Apparently lim_{n->infinity} log(n) - log(a(n))/n = 1. - Gerald McGarvey, Jun 12 2004
a(n) = (n*(n+2)*a(n-1) + (-1)^n)/(n+1) for n >= 1, a(0)=1. See the Charalambides reference.
a(n) = GAMMA(n+3,-1)*exp(-1)/(n+1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = A000166(n) + A000166(n+1).
A002469(n) = (n-2)*a(n-1) + A000166(n). - Gary W. Adamson, Apr 17 2009
If we take b(n) = (-1)^(n+1)*a(n) for n > 0, then for n > 1 the arithmetic mean of the first n terms is -b(n-1). - Franklin T. Adams-Watters, May 20 2010
a(n) = hypergeometric([2,-n],[],1)*(-1)^n = KummerU(2,3+n,-1)*(-1)^n. See the Abramowitz-Stegun handbook (for the reference see e.g. A103921) p. 504, 13.1.10, and for the recurrence p. 507, 13.4.16. - Wolfdieter Lang, May 20 2010
a(n) = n!*(1 + Sum_{k=0..n-2} sf(n-k)/(n-k)!) with the subfactorials sf(n):= A000166(n) (this follows from the exponential convolution). - Wolfdieter Lang, Jun 02 2010
a(n) = 1/(n+1)*floor(((n+1)!+1)/e). - Gary Detlefs, Jul 11 2010
a(n) = (Subfactorial(n+2))/(n+1). - Alexander R. Povolotsky, Jan 26 2011
G.f.: 1/(1-x-2x^2/(1-3x-6x^2/(1-5x-12x^2/(1-7x-20x^2/(1-.../(1-(2n+1)x-(n+1)(n+2)x^2/(1-... (continued fraction). - Paul Barry, Apr 11 2011
G.f.: hypergeom([1,2],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Sep 24 2012 - Feb 05 2014: (Start)
Continued fractions:
E.g.f. 1/E(0) where E(k) = 1 - 2*x/(1 + x/(2 - x - 2/(1 + x*(k+1)/E(k+1)))).
G.f.: S(x)/x - 1/x = Q(0)/x - 1/x where S(x) = Sum_{k>=0} k!*(x/(1+x))^k, Q(k) = 1 + (2*k + 1)*x/(1 + x - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + x - x*(k+2)/(1 - x*(k+1)/Q(k+1)).
G.f.: 1/x/Q(0) where Q(k) = 1/x - (2*k+1) - (k+2)*(k+1)/Q(k+1).
G.f.: (1+x)/(x*Q(0)) - 1/x where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: 2/x/G(0) - 1/x where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/ G(k+1))).
G.f.: ((Sum_{k>=0} k!*(x/(1+x))^k) - 1)/x = Q(0)/(2*x) - 1/x where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1+x)/Q(k+1))).
G.f.: W(0) where W(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+2)/(x*(k+1) - 1/W(k+1)))).
G.f.: G(0)/(1-x) where G(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1-x*(1+2*k))*(1-x*(3+2*k))/G(k+1)). (End)
From Peter Bala, Sep 20 2013: (Start)
The sequence b(n) := n!*(n + 2) satisfies the defining recurrence for a(n) but with the starting values b(0) = 2 and b(1) = 3. This leads to the finite continued fraction expansion a(n) = n!*(n+2)*( 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/n)))) ), valid for n >= 2.
Also a(n) = n!*(n+2)*( Sum_{k = 0..n} (-1)^k/(k+2)! ). Letting n -> infinity gives the infinite continued fraction expansion 1/e = 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/(n + ...)))) ) due to Euler. (End)
0 = a(n)*(+a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(+2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n >= 0. - Michael Somos, May 06 2014
a(n-3) = (n-2)*A000757(n-2) + (2*n-5)*A000757(n-3) + (n-3)*A000757(n-4), n >= 3. - Luis Manuel Rivera Martínez, Mar 14 2015
a(n) = A000240(n) + A000240(n+1), n >= 1. Let D(n) = A000240(n) be the permutations of [n] having no substring in {12,23,...,(n-1)n,n1}. Let d(n) = a(n-1) be the permutations of [n] having no substring in {12,23,...,(n-1)n}. Let d_n1 = A000240(n-1) be the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. Then the link "Forbidden Patterns" shows the bijection d_n1 ~ D(n-1) and since dn = d_n1 U D(n), we get dn = D(n-1) U D(n). Taking cardinalities we get the result for n-1, i.e., a(n-1) = A000240(n-1) + A000240(n). For example, for n=4 in this last equation, we get a(4) = 11 = 3+8. - Enrique Navarrete, Jan 16 2017
a(n) = (n+1)!*hypergeom([-n], [-n-1], -1). - Peter Luschny, Nov 02 2018
Sum_{n>=0} (-1)^n*n!/(a(n)*a(n+1)) = e - 2 (Herzig, 1998). - Amiram Eldar, Mar 07 2022
a(n) = KummerU(-n, -n - 1, -1). - Peter Luschny, May 10 2022
Showing 1-2 of 2 results.