cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A140444 Primes congruent to 1 (mod 14).

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Comments

From Federico Provvedi, May 24 2018: (Start)
Also primes congruent to 1 (mod 7).
For every prime p > 2, primes congruent to 1 (mod p) are also congruent to 1 (mod 2*p).
Conjecture: The monic polynomial P(x) = (x+1)^7/x - 1/x = ((x+1)^7-1)/x is irreducible but factorizable over Galois field (mod a(n)) with exactly 6 distinct irreducible factors of degree 1. Examples:
P(x) == (5 + x) (6 + x) (7 + x) (10 + x) (14 + x) (23 + x) (mod 29)
P(x) == (3 + x) (9 + x) (23 + x) (28 + x) (33 + x) (40 + x) (mod 43)
P(x) == (24 + x) (27 + x) (35 + x) (40 + x) (42 + x) (52 + x) (mod 71)
P(x) == (5 + x) (8 + x) (65 + x) (84 + x) (86 + x) (98 + x) (mod 113)
... (End).
Primes in A131877. - Eric Chen, Jun 14 2018

Crossrefs

A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).

Programs

  • GAP
    Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
  • Magma
    [p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
    
  • Maple
    select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Select[Prime[Range[500]], Mod[#, 14] == 1 &]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016

Extensions

Simpler definition from N. J. A. Sloane, Jul 11 2008

A140542 Primes of form 17*n - 6.

Original entry on oeis.org

11, 79, 113, 181, 283, 317, 419, 487, 521, 691, 827, 929, 997, 1031, 1201, 1303, 1439, 1609, 1847, 1949, 2017, 2153, 2221, 2357, 2459, 2663, 2731, 2833, 2969, 3037, 3343, 3547, 3581, 3853, 3989, 4057, 4091, 4159, 4261, 4363, 4397, 4567, 4703, 5009, 5077
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 28 2008

Keywords

Examples

			If n=1, then 17*1-6=11. If n=7, then 17*7-6=119.
		

Crossrefs

Cf. A129484.

Programs

Extensions

More terms from N. J. A. Sloane, Jul 11 2008

A140545 Primes of form 17n + 6.

Original entry on oeis.org

23, 193, 227, 397, 431, 499, 601, 839, 907, 941, 1009, 1213, 1451, 1553, 1621, 1723, 2029, 2063, 2131, 2267, 2437, 2539, 2777, 2879, 3049, 3083, 3253, 3389, 3457, 3491, 3559, 3593, 3797, 3967, 4001, 4273, 4409, 4783, 4817, 4919, 4987, 5021, 5531, 5701, 5939
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 29 2008

Keywords

Crossrefs

Cf. A129484.

Programs

Extensions

More terms from N. J. A. Sloane, Jul 11 2008

A092074 Primes congruent to 3 mod 17.

Original entry on oeis.org

3, 37, 71, 139, 173, 241, 479, 547, 683, 751, 853, 887, 1091, 1193, 1499, 1567, 1601, 1669, 1873, 1907, 2111, 2179, 2213, 2281, 2383, 2417, 2621, 2689, 2791, 2927, 3301, 3539, 3607, 3709, 3947, 4049, 4219, 4253, 4423, 4457, 4729, 4831, 4933, 4967, 5171
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 29 2004

Keywords

Comments

Used in a primality test.
Primes congruent to 3 mod 34. - Chai Wah Wu, Apr 29 2025

Crossrefs

Cf. A129484.

Programs

  • Magma
    [ p: p in PrimesUpTo(10000) | p mod 17 eq 3 ]; // Vincenzo Librandi, Apr 08 2011
  • Mathematica
    Select[ Range[3,5000,17], PrimeQ] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011 *)
    Select[Prime[Range[700]],Mod[#,17]==3&] (* Harvey P. Dale, Dec 03 2021 *)
  • PARI
    forprime(i=1,6000,if(Mod(i,17)==3,print1(i,",")))
    

Extensions

More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr) and Ray Chandler, Mar 30 2004

A138631 Primes of the form 17*k + 9.

Original entry on oeis.org

43, 179, 281, 349, 383, 587, 757, 859, 1063, 1097, 1301, 1471, 1607, 1709, 1777, 1811, 1879, 1913, 2083, 2287, 2389, 2423, 2593, 2729, 2797, 3001, 3137, 3307, 3511, 3613, 3851, 3919, 4021, 4157, 4259, 4327, 4463, 4871, 4973, 5279, 5347, 5381, 5449, 5483
Offset: 1

Views

Author

Keywords

Examples

			17*2 + 9 = 43, 17*10 + 9 = 179, 17*16 + 9 = 281, 17*20 + 9 = 349, 17*22 + 9 = 349, ...
		

Crossrefs

Cf. A138632.
Primes congruent to k mod 17: A129484 (k=1), A140544 (k=2), A092074 (k=3), A094657 (k=4), A138623 (k=5), A140545 (k=6), A138629 (k=7), A138633 (k=8), this sequence (k=9), A138627 (k=10), A140542 (k=11), A138625 (k=12), A141865 (k=13), A140540 (k=14), A140543 (k=15), A140541 (k=16).

Programs

  • Mathematica
    a={};Do[x=17*n+9;If[PrimeQ[x],AppendTo[a,x]],{n,10^2}];a
    Select[17*Range[350]+9,PrimeQ] (* Harvey P. Dale, May 14 2017 *)

Formula

From A.H.M. Smeets, Sep 05 2019: (Start)
a(n)/log(a(n)) ~ 16*n;
Integral_{x=2..a(n)} dx/log(x) ~ 16*n. (End)

Extensions

More terms from N. J. A. Sloane, Jul 11 2008

A141865 Primes congruent to 13 mod 17.

Original entry on oeis.org

13, 47, 149, 251, 353, 421, 523, 557, 659, 727, 761, 829, 863, 1033, 1237, 1373, 1543, 1747, 1951, 2053, 2087, 2393, 2699, 2767, 2801, 2903, 2971, 3209, 3413, 3583, 3617, 3719, 3821, 3889, 3923, 4093, 4127, 4229, 4297, 4603, 4637, 4909, 4943, 5011, 5113
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Cf. A129484.

Programs

Formula

a(n) ~ 16n log n. - Charles R Greathouse IV, Jul 02 2016

A138633 Primes of the form 17*k - 9.

Original entry on oeis.org

59, 127, 229, 263, 331, 433, 467, 569, 739, 773, 977, 1181, 1249, 1283, 1453, 1487, 1657, 1759, 1861, 1997, 2099, 2269, 2371, 2473, 2609, 2677, 2711, 3119, 3187, 3221, 3323, 3391, 3527, 3697, 3833, 4003, 4139, 4241, 4513, 4547, 4649, 4751, 5023, 5227, 5261
Offset: 1

Views

Author

Keywords

Examples

			17*4 - 9 = 59, 17*8 - 9 = 127, 17*14 - 9 = 229, 17*16 - 9 = 263, 17*20 - 9 = 331, 17*26 - 9 = 433, 17*28 - 9 = 467, ...
		

Crossrefs

Cf. A138634.
Primes congruent to k mod 17: A129484 (k=1), A140544 (k=2), A092074 (k=3), A094657 (k=4), A138623 (k=5), A140545 (k=6), A138629 (k=7), this sequence (k=8), A138631 (k=9), A138627 (k=10), A140542 (k=11), A138625 (k=12), A141865 (k=13), A140540 (k=14), A140543 (k=15), A140541 (k=16).

Programs

  • Mathematica
    a={};Do[x=17*n-9;If[PrimeQ[x],AppendTo[a,x]],{n,10^2}];a
    Select[17*Range[400]-9,PrimeQ] (* Harvey P. Dale, Jul 25 2020 *)

Formula

From A.H.M. Smeets, Sep 05 2019: (Start)
n ~ (1/16) * a(n)/log(a(n)).
n ~ (1/16) * Integral_{x=2..a(n)} dx/log(x). (End)

Extensions

More terms from N. J. A. Sloane, Jul 11 2008

A215137 a(n) = 17*n + 1.

Original entry on oeis.org

1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239, 256, 273, 290, 307, 324, 341, 358, 375, 392, 409, 426, 443, 460, 477, 494, 511, 528, 545, 562, 579, 596, 613, 630, 647, 664, 681, 698, 715, 732, 749, 766, 783, 800, 817, 834, 851, 868, 885, 902, 919, 936, 953, 970
Offset: 0

Views

Author

Jeremy Gardiner, Aug 04 2012

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,18]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    Range[1, 100, 17]
    LinearRecurrence[{2,-1}, {1,18}, 50] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    for(n=0, 50, print1(17*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
    

Formula

From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+16*x)/(1-x)^2.
E.g.f.: (17*x + 1)*exp(x). (End)

A124127 Numbers k such that 17k + 1 is prime.

Original entry on oeis.org

6, 8, 14, 18, 24, 26, 36, 38, 54, 56, 60, 66, 74, 78, 80, 84, 90, 98, 110, 116, 126, 138, 140, 150, 158, 164, 168, 180, 186, 194, 204, 210, 216, 228, 230, 236, 248, 260, 266, 270, 290, 294, 300, 308, 318, 320, 344, 356, 360, 368, 374, 378, 384, 386, 396, 404
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 29 2006

Keywords

Examples

			If k=116 then 17*k + 1 = 1973 (prime).
		

Crossrefs

Cf. A024905, A129484 (resulting primes).

Programs

A129480 a(n) = Prime(17*n).

Original entry on oeis.org

59, 139, 233, 337, 439, 557, 653, 769, 883, 1013, 1117, 1249, 1381, 1493, 1613, 1747, 1879, 2017, 2141, 2287, 2399, 2551, 2689, 2801, 2953, 3089, 3253, 3373, 3529, 3643, 3793, 3923, 4073, 4219, 4357, 4513, 4651, 4799, 4957, 5087, 5237, 5413, 5527, 5683
Offset: 1

Views

Author

Cino Hilliard, May 29 2007

Keywords

Examples

			The 17th prime is 59.
		

Crossrefs

Cf. similar sequences listed in A031336.
Cf. A129484.

Programs

  • Magma
    [NthPrime(17*n): n in [1..100]]; // G. C. Greubel, Feb 12 2024
  • Maple
    seq(ithprime(17*i),i=1..100); # Robert Israel, Sep 08 2014
  • Mathematica
    Prime[17*Range[1, 100]] (* G. C. Greubel, Feb 12 2024 *)
  • PARI
    cicada(n) = forstep(x=17,n,17,print1(prime2(x)","))
    
  • PARI
    a(n)=prime(17*n) \\ Edward Jiang, Sep 08 2014
    
  • Sage
    [nth_prime(17*n) for n in (1..50)] # Bruno Berselli, May 07 2014
    
Showing 1-10 of 10 results.