A129266 Duplicate of A129527.
1, 3, 3, 7, 5, 9, 7, 15, 9, 15
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: 1; 1,1; 0,0,1; 1,1,0,1; 0,0,0,0,1; 0,0,1,0,0,1; 0,0,0,0,0,0,1; 1,1,0,1,0,0,0,1; 0,0,0,0,0,0,0,0,1; 0,0,0,0,1,0,0,0,0,1; 0,0,0,0,0,0,0,0,0,0,1;
A115361 := proc(n,k) for j from 0 do if k+(2*j-1)*(k+1) > n then return 0 ; elif k+(2^j-1)*(k+1) = n then return 1 ; end if; end do; end proc: # R. J. Mathar, Jul 14 2012
(*recurrence*) Clear[t] t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, Sum[t[n, k + i], {i, 1, 2 - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0] Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 14}]] (* Mats Granvik, Jun 26 2014 *)
tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = T^(-1); for (n=1, nn, for (k=1, n, print1(Ti[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
A115361_row(n,v=vector(n))={until(bittest(n,0)||!n\=2,v[n]=1);v} \\ Yields the n-th row (of length n). - M. F. Hasler, May 13 2018
T(n,k)={if(n%k, 0, my(e=valuation(n/k,2)); n/k==1<Andrew Howroyd, Aug 03 2018
# translation of Maple code by R. J. Mathar def a115361(n, k): j = 0 while True: if k + (2*j - 1) * (k + 1) > n: return 0 elif k + (2**j - 1) * (k + 1) == n: return 1 else: j += 1 # Tilman Piesk, Jun 10 2025
[(1/2)*&+[EulerPhi(3*d) :d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Sep 19 2019
nmax = 70; CoefficientList[Series[Sum[x^(3^k)/(1 - x^(3^k))^2, {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x] // Rest a[n_] := DivisorSum[n, # &, IntegerQ[Log[3, n/#]] &]; Table[a[n], {n, 1, 70}] a[n_] := 1/2 Sum[EulerPhi[3 d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
A327625(n) = (n+sumdiv(n,d,my(b=0); if(isprimepower(n/d,&b)&&(3==b),d,0))); \\ Antti Karttunen, Sep 19 2019
Array[DivisorSum[#, EulerPhi[5 #] &]/4 &, 76] (* Michael De Vlieger, Dec 16 2022 *) f[p_, e_] := If[p == 5, (5^(e + 1) - 1)/4, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)
a(n) = sumdiv(n, d, eulerphi(5*d))/4;
my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(5*k)*x^k/(1-x^k))/4)
Array[DivisorSum[#, EulerPhi[7 #] &]/6 &, 79] (* Michael De Vlieger, Dec 16 2022 *) f[p_, e_] := If[p == 7, (7^(e + 1) - 1)/6, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)
a(n) = sumdiv(n, d, eulerphi(7*d))/6;
my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(7*k)*x^k/(1-x^k))/6)
f[p_, e_] := p^(e-3)*(1 + p + p^2 + p^3); f[p_, 1] := 1 + p; f[p_, 2] := 1 + p + p^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^max(e-3,0) * (p^min(e+1,4)-1)/(p-1));}
f[p_, e_] := p^e + (p^(e+1) - If[EvenQ[e], p, 1])/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^e + (p^(e + 1) - if(e%2, 1, p))/(p^2 - 1));}
f[p_, e_] := (p^(e+1) - p^e + p^(e-2) - 1)/(p-1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e == 1, p, (p^(e+1) - p^e + p^(e-2) - 1)/(p-1)));}
f[p_, e_] := If[p < 5, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p < 5, (p^(e + 1) - 1)/(p - 1), p^e));}
f[p_, e_] := If[p > 3, (p^(e+1) - 1)/(p - 1), p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p > 3, (p^(e + 1) - 1)/(p - 1), p^e));}
Comments