cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107730 Numbers n such that prime(n+1) has the same last digit as prime(n).

Original entry on oeis.org

34, 42, 53, 61, 68, 80, 82, 101, 106, 115, 125, 127, 138, 141, 145, 154, 157, 172, 175, 177, 191, 193, 204, 222, 233, 258, 259, 266, 269, 279, 289, 306, 308, 310, 316, 324, 369, 383, 397, 399, 403, 418, 422, 431, 442, 443, 474, 480, 491, 497, 500, 502, 518
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2007

Keywords

Examples

			a(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9.
a(2) = 42 because prime(42) = 181, prime(43) = 191, both end with the digit 1.
a(4) = 61 because prime(61) = 283, prime(62) = 293, both end with the digit 3.
a(5) = 68 because prime(68) = 337, prime(69) = 347, both end with the digit 7.
		

Crossrefs

Union of rows r == 0 (mod 5) of A174349. Indices of multiples of 10 (A008592) in A001223.

Programs

  • GAP
    P:=List(Filtered([1..4000],IsPrime),n->Reversed(ListOfDigits(n)));;
    a:=Filtered([1..Length(P)-1],i->P[i+1][1]=P[i][1]); # Muniru A Asiru, Oct 31 2018
  • Maple
    isA107730 := proc(n) local ldign, ldign2 ; ldign := convert(ithprime(n),base,10) ; ldign2 := convert(ithprime(n+1),base,10) ; if op(1,ldign) = op(1,ldign2) then true ; else false ; fi ; end: for n from 1 to 600 do if isA107730(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 15 2007
  • Mathematica
    Select[Range[200],IntegerDigits[Prime[ # ]][[ -1]]==IntegerDigits[Prime[ #+1]][[ -1]]&] (* Stefan Steinerberger, Jun 14 2007 *)
    Flatten[Position[Partition[Prime[Range[600]],2,1],?(Mod[#[[1]],10] == Mod[#[[2]],10]&),{1},Heads->False]] (* _Harvey P. Dale, Aug 20 2015 *)
  • PARI
    isok(n) = (prime(n) % 10) == prime(n+1) % 10; \\ Michel Marcus, Feb 16 2017
    
  • PARI
    is_A107730(n)=!((nextprime(1+n=prime(n))-n)%10) \\ This (...) is twice as fast as prime(n+1)-prime(n), and prime(n) becomes very slow for n > 41538, even with primelimit = 10^7. - M. F. Hasler, Oct 24 2018
    

Formula

Numbers n such that A000040(n)==A000040(n+1) mod 10, or A000040(n+1) - A000040(n) = 10*k for some integer k, or n such that A129750(n) = 0. [Corrected and edited by M. F. Hasler, Oct 24 2018]
A107730 = A001223^(-1)(A008592) = { i > 0 | A001223(i) == 0 (mod 10)} = U_{k>0} {A174349(5k,j); j >= 1}. - M. F. Hasler, Oct 24 2018
Union of A320703, A320708, A320713, A320718, ... A116493,..., A116496 ... etc. - R. J. Mathar, Apr 30 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Jun 14 2007

A371390 Numbers k such that prime(k), prime(k+1), prime(k+2), prime(k+3) and prime(k+4) all have the same last digit.

Original entry on oeis.org

11582, 17385, 19317, 20579, 22931, 42098, 51895, 52252, 55259, 60393, 62192, 62193, 62680, 64050, 65324, 71483, 76391, 76773, 76805, 77052, 81139, 86711, 95661, 100208, 102032, 113646, 113892, 113954, 115251, 124227, 125218, 125586, 144165, 144299, 147619, 147620
Offset: 1

Views

Author

Michel Lagneau, Mar 20 2024

Keywords

Examples

			11582 is a term because prime(11582) = 123229, prime(11583) = 123239, prime(11584) = 123259, prime(11585) = 123269 with the same last digit 9.
		

Crossrefs

Programs

  • Maple
    nn:=15*10^4:d:=array(1..5):
    for n from 1 to nn do:
     for k from 1 to 5 do:
       d[k]:=irem(ithprime(n+k-1),10):
     od:
      if d[1]=d[2] and d[1]=d[3] and
    d[1]=d[4] and d[1]=d[5]
        then
         printf(`%d, `,n):
        else
      fi:
    od:
  • PARI
    \\ See PARI link
    
  • Python
    from itertools import count, islice
    from sympy import nextprime
    def A371390_gen(): # generator of terms
        xlist, p = [2, 3, 5, 7, 1], 11
        for k in count(1):
            if len(set(xlist)) == 1:
                yield k
            p = nextprime(p)
            xlist = xlist[1:]+[p%10]
    A371390_list = list(islice(A371390_gen(),10)) # Chai Wah Wu, Apr 13 2024

A371403 Least k such that prime(k), prime(k+1), prime(k+2), ..., prime(k+n) all have the same last digit.

Original entry on oeis.org

34, 258, 2147, 11582, 62192, 274810, 1500309, 2235294, 10919138, 24000612, 3074210315, 6244442805, 6244442805, 143338476264, 244844614858
Offset: 1

Views

Author

Michel Lagneau, Mar 21 2024

Keywords

Comments

The interest in studying a sequence of n consecutive prime numbers having the same last digit is to look at the behavior of the rarefaction of these numbers when n becomes large.
a(k) > 10^10 for k >= 14. - David A. Corneth, Mar 22 2024

Examples

			a(1) = A107730(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9, and no two consecutive smaller primes end with the same digit.
a(2) = 258 because prime(258) = 1627, prime(259) = 1637, prime(260) = 1657 with the same last digit 7, and no three consecutive smaller primes have the same last digit.
a(4) = A371390(1).
		

Crossrefs

Programs

  • Maple
    nn:=15*10^6:
    for n from 2 to 7 do :
       ii:=0:d:=array(1..n):
      for m from 1 to nn while(ii=0)
    do:
       lst:={}:
         for k from 1 to n do:
    d[k]:=irem(ithprime(m+k-1),10):
            lst:=lst union {d[k]}:
         od:
          if lst={d[1]}
           then
           printf(`%d %d \n`,n-1,m):ii:=1:
           else
          fi:
        od:
        od:
  • Mathematica
    a[n_] := Module[{v = Mod[Prime[Range[n + 1]], 10], k = 1, p}, p = Prime[n + 1]; While[! SameQ @@ v, p = NextPrime[p]; v = Join[Rest[v], {Mod[p, 10]}]; k++]; k]; Array[a, 6] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    upto(n) = {
    	n += 30;
    	my(res = List(), q = 2, t = 1, ld = 2, nld, streak = 0);
    	forprime(p = 3, oo,
    		nld = p%10;
    		if(nld == ld,
    			streak++;
    			if(streak > #res,
    				listput(res, t-streak+1);
    				print1(t-streak+1", ");
    			)
    		,
    			streak = 0
    		);
    		q = p;
    		ld = nld;
    		t++;
    		if(t > n,
    			return(res);
    		)
    	);
    	res
    } \\ David A. Corneth, Mar 23 2024

Extensions

a(7)-a(10) from Amiram Eldar, Mar 21 2024
a(11)-a(13) from David A. Corneth, Mar 22 2024
a(14) from Michael S. Branicky, May 15 2025
a(15) from Michael S. Branicky, May 21 2025
Showing 1-3 of 3 results.