cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132411 a(0) = 0, a(1) = 1 and a(n) = n^2 - 1 with n >= 2.

Original entry on oeis.org

0, 1, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 12 2007

Keywords

Comments

X values of solutions to the equation X^3 - (X + 1)^2 + X + 2 = Y^2.
To prove that X = 1 or X = n^2 - 1: Y^2 = X^3 - (X + 1)^2 + X + 2 = X^3 - X^2 - X + 1 = (X + 1)(X^2 - 2X + 1) = (X + 1)*(X - 1)^2 it means: X = 1 or (X + 1) must be a perfect square, so X = 1 or X = n^2 - 1 with n >= 1. Which gives: (X, Y) = (0, 1) or (X, Y) = (1, 0) or (X, Y) = (n^2 - 1, n*(n^2 - 2)) with n >= 2.
An equivalent technique of integer factorization would work for example for the equation X^3 + 3*X^2 - 9*X + 5 = (X+5)(X-1)^2 = Y^2, looking for perfect squares of the form X + 5 = n^2. Another example is X^3 + X^2 - 5*X + 3 = (X+3)*(X-1)^2 = Y^2 with solutions generated from perfect squares of the form X + 3 = n^2. - R. J. Mathar, Nov 20 2007
Sum of possible divisors of a prime number up to its square root, with duplicate entries removed. - Odimar Fabeny, Aug 25 2010
a(0) = 0, a(1) = 1 and a(n) is the smallest k different from n such that n divides k and n+1 divides k+1. - Michel Lagneau, Apr 27 2013
The identity (4*n^2-2)^2 - (n^2-1)*(4*n)^2 = 4 can be written as A060626(n+1)^2 - a(n+2)*A008586(n+2)^2 = 4. - Vincenzo Librandi, Jun 16 2014
Conjecture: the sequence terms are the exponents in the expansion of the q-series Sum_{n >= 0} q^(2*n) * Product_{k >= 2*n+2} 1 - (-q)^k = 1 + q^3 + q^8 + q^15 + q^24 + .... - Peter Bala, May 10 2025

Examples

			0^3 - 1^2 + 2 = 1^2, 1^3 - 2^2 + 3 = 0^2, 3^3 - 4^2 + 5 = 4^2.
For P(n) = 29 we have sqrt(29) = 5.3851... so possible divisors are 3 and 5; for P(n) = 53 we have sqrt(53) = 7.2801... so possible divisors are 3, 5 and 7. - _Odimar Fabeny_, Aug 25 2010
		

Crossrefs

Programs

  • Magma
    [0,1] cat [n^2 - 1: n in [2..60]]; // Vincenzo Librandi, May 01 2014
    
  • Maple
    a:= n-> `if`(n<2, n, n^2-1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 24 2021
  • Mathematica
    Join[{0, 1}, LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 80]] (* and *) Table[If[n < 2, n, n^2 - 1], {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
    Join[{0,1},Range[2,50]^2-1] (* Harvey P. Dale, Feb 27 2013 *)
    CoefficientList[Series[x + x^2 (-3 + x)/(-1 + x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 01 2014 *)
  • PARI
    concat(0, Vec(x+x^2*(-3+x)/(-1+x)^3 + O(x^100))) \\ Altug Alkan, Dec 18 2015
    
  • PARI
    a(n)=if(n>1,n^2-1,n) \\ Charles R Greathouse IV, Dec 18 2015

Formula

a(n) = A005563(n-1), n > 1.
G.f.: x + x^2*(-3+x)/(-1+x)^3. - R. J. Mathar, Nov 20 2007
Starting (1, 3, 8, 15, 24, ...) = binomial transform of [1, 2, 3, -1, 1, -1, ...]. - Gary W. Adamson, May 12 2008
a(n) = A170949(A002522(n-1)) for n > 0. - Reinhard Zumkeller, Mar 08 2010
Sum_{n>0} 1/a(n) = 7/4. - Enrique Pérez Herrero, Dec 18 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/4. - Amiram Eldar, Sep 27 2022
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: exp(x)*(x^2 + x - 1) + x + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 5. (End)

Extensions

Definition simplified by N. J. A. Sloane, Sep 05 2010